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PREFACE

The proceedings contain 56 conference papers presented at the 37th conference Computational
Mechanics 2022, which was held at the Hotel Srní in Srní, Czech Republic, on November 7 � 9,
2022. This annual conference, which was attended by nearly eighty participants from the Czech
Republic, Slovakia and from abroad, was organised by the Department of Mechanics, Faculty of
Applied Sciences of the University of West Bohemia under the auspices of

� Milo² �elezný, the Dean of the Faculty of Applied Sciences,

� Rudolf �poták, the President of the Pilsen Region,

� Czech Society for Mechanics,

� Czech National Committee of IFToMM,

� Central European Association for Computational Mechanics.

The main objective of this traditional conference is to bring together academicians, re-
searchers and industrial partners interested in relevant disciplines of mechanics including

� solid mechanics,

� dynamics of mechanical systems,

� mechatronics and vibrations,

� reliability and durability of structures,

� fracture mechanics,

� mechanics in civil engineering,

� �uid mechanics and �uid-structure interac-
tion,

� thermodynamics,

� biomechanics,

� heterogeneous media and multiscale problems,

� experimental methods in mechanics,

to create an opportunity for meeting, discussion and collaboration among the participants. As
in the previous years, the three best papers presented at this conference were awarded the Czech
Society for Mechanics Award for young researchers under 35 years of age.

To all conference participants, we o�er the possibility to publish their peer-reviewed full
papers in the international journal Applied and Computational Mechanics indexed by
Scopus. This journal has been published by the University of West Bohemia since 2007 (see
https://www.kme.zcu.cz/acm/).

We would like to express our gratitude to all the invited speakers for their signi�cant con-
tribution to the conference and the time and e�ort they put. Considerable acknowledgement
belongs also to the members of the Organising Committee for their important work.

We strongly believe that all participants of the CM2022 enjoyed their stay in the beautiful
nature of the �umava region in a meaningful way. Finally, we would like to invite you all to
come to the next conference CM2023.

Jan Vimmr

University of West Bohemia
Chairman of the Scienti�c

Committee

Vít¥zslav Adámek

University of West Bohemia
Chairman of the Organising

Committee
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Vořechovský M.: Failure probability estimation of functions with binary outcomes via adap-
tive sequential sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
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Model reduction in aeroservoelasticity 

A. Balon, P. Beneš, Z. Šika 

Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 
Technicka 4, Praha 6, Czech Republic  

1. Introduction 

Aeroservoelasticity is a field focusing on interaction between aerodynamic forces, elastic 

forces, and control forces acting on a body [4]. To correctly predict these interactions complex 

numerical models are often used. The complexity of the numerical models can vary however 

the resulting numerical model is usually nonlinear and of high order. At this stage the model 

cannot be used for control law design and model reduction is required. Essentially there are two 

approaches to reduce the order of a model [2]. First approach is to project the dynamics of high-

dimensional system onto a low-dimensional subspace. Second approach is system identification 

which uses collected data, either from experiment or simulation, to construct low order models 

that match the input-output relationship of the data [2], [3]. Due to the ease of implementation, 

system identification is often preferred for control law design. The rest of this extended abstract 

focuses on methods which produce linear models such as eigensystem realization algorithm or 

dynamic mode decomposition [2]. 

Eigensystem realization algorithm (ERA) was first introduced in 1985 to identify modal 

parameters and reduce dynamic systems from experimental data [3]. The method is based on 

obtaining Markov parameters from impulse response experiment, which are then used to 

construct a generalized Hankel matrix. Singular value decomposition (SVD) of the Hankel 

matrix is then performed to reduce the order of the model and obtain the state matrices of linear 

dynamic system. If the data is collected from a simulation, then obtaining impulse response of 

the system is quite simple. If the data is collected from an experiment where impulse response 

might not be possible to perform, then a pseudo random input can be used and subsequently 

observer Kalman filter identification (OKID) can be used to extract impulse response of the 

system from the collected data [2]. 

2. Example: 2D flow over a flat plate with single control input 

The data input-output impulse response data is collected from a simulation of unsteady vortex 

lattice method (UVLM) coupled with linear finite element model. The input is the control force 

and outputs are coefficient of lift 𝐶𝐿 and vertical displacement velocity 𝑧̇ at the trailing edge of 

the plate (Fig. 1). ERA is used to extract linear dynamic model from the data. Order of the 

reduced model is determined by a choice based on singular values of the Hankel matrix (Fig. 2). 

Fig. 3 shows both simulation model response and reduced model response to a ramp and sine 

wave inputs. This reduced order model is now suitable for control engineering applications. 

It should be noted that the states of ERA model are not physical states such as position or 

velocity. Therefore, use of control techniques which rely on model output is necessary, for 

example model predictive control, LQR with output feedback, or SHAVO [1]. 
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Fig. 1. Illustration of the flow over partially flexible flat plate with a control force input 

 
Fig. 2. Lift coefficient error between simulation and ERA outputs for impulse response (left). Several singular 

values of Hankel matrix and selected model order (right)  

 
Fig. 3. Model responses to ramp and sine wave inputs 

Acknowledgements  

The work has been supported by the project SGS22/150/OHK2/3T/12 "Mechatronics and 

adaptronics 2022" of Czech Technical University in Prague.  

References  

[1] Beneš, P., Valášek, M., Šika, Z., Zavřel, J., Pelikán, J., SHAVO control: The combination of the adjusted 

command shaping and feedback control for vibration suppression, Acta Mechanica 230 (5) (2019) 1891-

1905. 

[2] Brunton, S. L., Kutz, J. N., Data-driven science and engineering: Machine learning, dynamical systems, and 

control, Cambridge University Press, 2022. 

[3] Juang, J. N., Pappa, R. S., An eigensystem realization algorithm for modal parameter identification and 

model reduction. Journal of guidance, control, and dynamics 8 (5) (1985) 620-627. 

[4] Tewari, A., Aeroservoelasticity, modeling and control, Springer New York, 2015. 

2



2022 November 7 - 9, 2022
Srní

37   conference with international participation  th

Assessment of various computational approaches
for airfoil stability analysis with two degrees of freedom

M. Bělohoubek, M. Hajžman, J. Vimmr
Faculty of Applied Sciences, University of West Bohemia, Univerzitnı́ 8, 301 00 Plzeň, Czech Republic

The paper deals with the solution of fluid-structure interaction (FSI) problems, specifically the
external aerodynamics of airfoils and turbine blades. This problem is of high importance since
structural instabilities may occur if the flow field’s input parameters and the airfoil’s proper-
ties are not properly configured. A typical example of such instability is flutter, a self-excited
oscillation of the structure induced by the flowing fluid. A long-term problem in solving FSI
tasks with classical numerical approaches (FVM, FEM) is their high computational complexity,
which does not allow solving these tasks in real-time. This deficit is usually compensated by
using semi-empirical methods, which, however, do not offer comparable accuracy compared to
numerical techniques. This paper aims to compare the two mentioned approaches and their ad-
vantages and disadvantages in the context of the two degrees of freedom (DoF) airfoil wrapping
problems.

For the analysis, a 2D perfectly rigid airfoil model with 2 DoF, namely in heave h and
pitch θ, was chosen, a sketch of which can be seen in Fig. 1. Based on the Lagrange equations,
the system’s equations of motion were then derived, which have the following form

mḧ−mθ̈eMS cos(θ + ϕ̃0) +mθ̇2eMS sin(θ + ϕ̃0) + khh = mg − Ldyn,

(me2MS + IMC
) θ̈ −mḧeMS cos(θ + ϕ̃0) + kθθ = −mgeMS cos(θ + ϕ̃0) +Mdyn,

}
(1)

where m is the mass of the body, kh is the stiffness of the vertical spring, kθ is the stiffness of
the torsion spring, g is the gravitational acceleration and I corresponds to the moment of inertia,
the form of the aerodynamic force effects Ldyn andMdyn depends on the choice of the particular
solver.

The first approach to solving the problem was a complex CFD analysis using the ANSYS
Fluent software, which is based on solving a nonlinear Reynolds-averaged Navier-Stokes equa-

AC

kh

L

D MC

mg

θ

ϕ̃0

h

c

eAS

eMS

c
4

M kθ

SC

chord line
camber line

MC −mass center
AC − aerodynamic center

SC − shear center

Legend:

U∞

Fig. 1. Sketch of the analyzed airfoil profile with 2 DoF, including force effects on the system
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tions (RANS) using the finite volume method (FVM). In this problem, a computational domain
of type C was chosen, and the airfoil was the symmetric profile NACA0012. In addition, a
pressure-based solver and a single-equation Spalart-Allmaras (SA) turbulence model were used
to solve the external aerodynamics problems. To minimize the resulting numerical calculation
errors, a mesh resolution study was calculated, especially in the boundary layer region of the
airfoil where y+max ∼ 1. The influence of the choice of the turbulent model (specifically SA,
SST k–ω, and LES) was also investigated. Further specifications of the chosen domain, the
quality of the discretization, and the settings of other parameters are given in the paper [2].

The main disadvantage of the numerical model based on the FVM is its high computational
cost, where several tens of hours of machine time of a standard desktop computer are needed
to obtain a solution of one-time response to initial conditions with a total length of 6 s. On the
other hand, the advantage of this approach is the high complexity of the obtained outputs and
their accuracy. The graphical outputs demonstrate this in Fig. 2, which offer a comparison with
the experimental data available in the literature [5]. The plots show comparisons in the time and
frequency domain for four cases of initial-boundary conditions for the flow field and airfoil.
The time-domain output quantity is the vertical displacement zw located at the top of the airfoil
at a distance of 0.7c from the wing’s leading edge.

Comparisons with the experiment are made for both the one and two DoF cases, the first
three cases with zero flow field velocity, and the last case (bottom right) shows a comparison
of the time domain response, which the author of the experiment refers to as the limiting cyclic
oscillation, i.e., the limit of instability (flutter) directly. Except for the last case, the time domain
responses achieved a good agreement, and the higher amplitude of the experimental data is
seen in the last case. More importantly, however, the stability limit has been reached in the
numerical calculation for the same flow field velocity. Thus, despite the mentioned differences,
the outputs of ANSYS Fluent software represent a suitable reference to which the outputs from
the application of other methods can be related.

Fig. 2. Comparison of ANSYS Fluent generated outputs with experimental data presented in literature
[5]. Top left case with 1 DoF in pitch and for Re = 0, the top right case with 1 DoF in heave and Re = 0,
the bottom left case with 2 DoF and for Re = 0 and bottom right case with 2 DoF and Re = 30.6× 103

corresponding to the flutter limit
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As far as semi-empirical methods are concerned, they offer an advantage over the complex
CFD approach in terms of much lower computational cost (for the identical problem described
above, the solution is computed in higher units of seconds). However, the disadvantage is the
lower accuracy of the results obtained. The popular Quasi steady theory approach and the
Theodorsen theory approach were selected for comparison from several possible variants. The
definition of the aerodynamic force effects Ldyn and Mdyn from Eq. (1) including their detailed
derivation is given in the literature [3]. Both methods were implemented in MATLAB, and
the more complex approach of Theodorsen theory was verified on the outputs reported in the
literature [1]. As with the ANSYS Fluent software, a time-step resolution study was performed.

The analyses show that for the case of both semi-empirical approaches, there is higher
damping of the model oscillations across different variations of the structural parameter set-
tings and initial conditions. This is well illustrated in Fig. 3 showing the values of the dynamic
force effects Ldyn and Mdyn over time for the approaches represented by Fluent, Quasti steady
theory and Theodorsen theory. In addition to the noticeably higher dissipation of the two semi-
empirical models, on closer examination, the plots show a good indication of the evolution of
the quantities of interest. This shows that although greater damping is typical of both semi-
empirical methods, only the curve corresponding to the Theodorsen theory calculation follows
the Fluent outputs in a trend direction. We note here that a similar result can be observed for
the outputs of both displacements over time and also for other settings of the model input.

Fig. 3. Comparison of the dynamic force effects of the lift force Ldyn (left) and pitching moment Mdyn

(right) for three different numerical approaches. In the zoom-in, the trend of the individual force effects
can be seen, in which there is an agreement between Thedorsen theory and the results of the Fluent

The phenomenon of the higher damping of Theodorsen theory compared to the Fluent soft-
ware outputs is evident even when directly comparing the value of the flutter threshold for a
particular choice of input parameters. This fact is well illustrated in Fig. 4, which shows the
time responses to the flutter limit for Theodorsen theory (top left) and Fluent (top right). It is
also possible to find the stability limit directly using methods based on modal analysis. A vari-
ety of approaches based on modal analysis principles have been developed for airfoil problems,
of which the p method (see, e.g., [4] for a derivation) and the U–g method (e.g., [1]) have been
implemented here. These methods do not need to iterate solutions for different levels of input
flow field velocity U∞ and thus have the potential to streamline the flutter limit detection pro-
cess further. Outputs of the modal analysis in Fig. 4 (bottom) operate with the definition of
force effects based on Theodorsen theory, and the resulting values of the limiting velocity of the
flow field U∞ should be comparable to the outputs of Theodorsen theory.

As the presented paper shows, complex CFD numerical methods can be used to solve real
problems of complex FSI external aerodynamics tasks. However, despite the currently available
computational performance, their high computational cost remains a disadvantage. On the other

5



Fig. 4. Comparison of different approaches for flutter limit detection for a specific set of the 2 DoF rigid
airfoil problem. Top left output for Theodorsen theory (U∞ = 208.1m · s−1), top right for ANSYS
Fluent software (U∞ = 202.7m · s−1), bottom left for p method (U∞ = 208.6m · s−1) and bottom right
for U–g method (U∞ = 207.1m · s−1)

hand, semi-empirical approaches to solving this problem offer lower computational costs but at
the loss of a certain accuracy of the solution. Of the semi-empirical approaches investigated,
the one based on Theodorsen theory appears to be the most appropriate approach. Despite still
significant differences in the outputs shows trend-like characteristics with the Fluent outputs.
Eliminating the differences between the Theodorsen approach and the Fluent outputs would
provide an accurate and efficient tool for flutter limit detection. This elimination is the subject
of further investigation.
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Mechanical properties of 3D printed composite material 
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1. Introduction 

Additive manufacturing (AM), become widely used in engineering prototyping, complex 

geometry, and multi-purpose. The PolyJet 3D printing method is photopolymer jetting that 

deposits of voxel-based droplets of photopolymer resins onto a print bed, after which the resins 

are cured using ultraviolet (UV) lamps. The development of novel photopolymer resins, for 

instance, Agilus30 and Tango+ have become accessible to PolyJet technology. The mechanical 

flexibility of PolyJet elastomers has made them mainly useful for applications like soft robotic 

active hinges, actuators, and building a complex geometry [1], [2]. 

The paper is intended to determine the mechanical properties of Additive Manufacturing of 

the Digital Material DM40 (Agilus30 and VeroClear) in terms of selecting the appropriate 

hyperplastic model. The work aim is to compare the simulation of two hyperelastic materials 

Mooney-Rivlin (MR) and Ogden with the experiment. The DM40 material behavior is visco-

hyperelastic, therefore the viscoelastic part of the material response will be considered. 

2. Constitutive model 

2.1. Hyperelastic model 

The tension test was performed on a dumbbell sample under a strain rate of 4  10-2 s-1 to define 

the material constants. 

The experimental data were used to fit the Ogden and Mooney-Rivlin models by using MSC 

Marc software, the strain energy function of the Ogden model is expressed by Eq.1 and data 

fitting, as well as the material constants, are shown in Fig.1 and Table 1 respectively [3] 

 𝑊 = ∑
µ𝑖

𝛼𝑖
(𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3) +
𝐾

2

𝑁
𝑖=1 (𝐽 − 1) , (1) 

where λ1, λ2, and λ3 are principal stretches, µi are moduli and αi are non-dimensional material 

constants. J and K are the elastic volume ratio and the material bulk modulus, respectively. The 

Mooney-Rivlin Strain energy function is as follows [3] 

 𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼1 − 3) , (2) 

where 𝐶10, 𝐶01and 𝐶11 are material constants while 𝐼1and 𝐼2 are invariants. Fig. 2 illustrates the 

fitting results and the material constants are presented in Table 2. 

Table 1. Ogden model constant    Table 2. Mooney-Rivlin model constant 

Terms Moduli Exponents  Material constant 

1 2.21514 0.167737  C10 0.100513 

2 0.055668 5.20789  C01 0.102029 

3 0.768557 0.147847  C11 0.0782547 
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  Fig. 1. Ogden model - fitting to experiment        Fig. 2. MR model - fitting to experiment 

2.2. Viscoelastic model 

The stress relaxation was investigated on a cylindrical sample (height 25 mm and diameter 

17.9 mm) at strain 0.5 with a ramp time of 1.5 s to investigate the viscoelastic properties of the 

material. The relaxation moduli are presented by the Prony series in Eq. (3), [3], 

 𝐸(𝑡) = 𝐸∞ + ∑ 𝐸𝑛 𝑒𝑥𝑝(
−𝑡

𝜏𝑛
)𝑁

𝑛=1  , (3) 

where t is time,  𝐸𝑛 is the relaxation modulus, 𝜏𝑛 is the relaxation time constant, and  𝐸∞ is the 

long-term modulus. The relaxation data fitted with the Prony series is in Fig. 3 and the four 

terms of viscoelastic material constants are presented in Table 3. 

 

Fig. 3. The experimental fitting of the Prony series 

3. Results and discussion 

The hyper-viscoelastic material was validated using the cylinder sample compressed to 50 % 

with a strain rate of 4  10-2 s-1. In this work, the friction between the compression plates  
 

Table 3. Viscoelastic Prony series constant 

Terms Relaxation time Relaxation coefficient  

1 0.0657 0.38702 

2 1.11 0.21787 

3 8.238 0.0968119 

4 100.029 0.0387605 
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and the sample was measured using a tribometer and considered for the simulation. The friction 

coefficient is µ = 0.8. It is clearly shown from the results that the Ogden model has a good 

agreement with the experiment data, whereas the Mooney-Rivlin has a high deviation from the 

experiment. This indicates that for the description of mechanical properties of the composite 

material DM40 (Agilus30 and VeroClear) the Ogden model with three terms can be a suitable 

choice. 

 

Fig. 4. The experiment validation with (a) Mooney-Rivlin and (b) Ogden models 
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Solution of incompressible viscid fluid flow using
a physical informed neural network

O. Bublı́k
Faculty of Applied Sciences, University of West Bohemia, Univerzitnı́ 8, 301 00 Plzeň, Czech Republic

A physical informed neural network (PINN) is the novel approach for solving a partial differ-
ential equation using a neural network. This concept was firstly introduced in the paper [3],
where the PINN was used for the solution of various partial differential equations. Since then,
many papers have been published dealing with the solution of a wide range of partial differential
equations [1, 2].

The principle of this novel method is quite simple. It considers a solution of an equation
as a non-linear function defined by a neural network. In other words, the neural network is
used as the mapper from the space-time variables into unknowns. This contrasts sharply with
classical methods, where the solution is considered as a linear combination of basis functions.
The crucial part of the PINN approach lies in constructing a loose function, see Fig. 1. Firstly,
the automatic differentiation process is used to find the exact space and time derivatives of a
solution with arbitrary orders, see green layer. Then the solution, with its derivatives, is put
into the equations in the classical or weak form, see the red box. If we assume that the exact
solution satisfies the equations together with boundary conditions, we can think of the value
after substitution directly as the loss function.

Fig. 1. Example of physical informed neural network for solution of Navier-Stokes equations
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The training process starts by choosing points inside and on the boundary of the computa-
tional domain. The training algorithm tries to minimize the loss function evaluated for selected
points. Suppose the loss function is minimized to zero. In that case, the function described
by the neural network will be satisfying boundary conditions at the boundary points and the
equation at the inner points.

The methodology is demonstrated in the solution of the flow field of incompressible vis-
cid fluid in the channel for various Reynolds numbers. Figs. 2 and 3 show the comparison
between PINN predicted solution and solution computed by discontinuous Galerkin finite ele-
ment method (DGFEM).

Fig. 2. Comparison of PINN predicted solution (left) with a solution computed by DGFEM (middle) for
Reynolds number 10. The figure on the right shows the error between solutions

Fig. 3. Comparison of PINN predicted solution (left) with a solution computed by DGFEM (middle) for
Reynolds number 100. The figure on the right shows the error between solutions
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Modelling of gear couplings
in the framework of multibody systems
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Univerzitnı́ 8, 301 00 Plzeň, Czech Republic

A computational investigation of multibody systems dynamics [2] is widely applied in various
practical and research problems. Since the multibody system is composed of rigid or flexible
bodies, interconnected with multiple joints, and loaded by different types of forces, all relevant
parts must be included in the mathematical model of such a system. In general, the bodies can
perform large motions and are driven by drives, that are often controlled by a human operator
or by some autonomous control strategy. The gear couplings (GC) are the most common parts
of the drive trains for various multibody systems, such as robotic manipulators, wind power
plants, vehicles, and other systems with rotating parts. The purpose of the GC is to transfer
the rotary motion of a drive (motor, engine, etc.) to another body with desired rotation ratio.
This also applies to robotic manipulators based on tensegrity structures, where the length of
cables is adjusted using motors. The motor rotation needs to be transferred with proper ratio
to a cable winch to achieve stable motion of the whole tensegrity structure and also to achieve
good dexterity and controllability. This paper deals with the summary of standard approaches
of gear and gear coupling modelling in the framework of multibody system dynamics. The most
common gear coupling types are spur, helical, bevel, hypoid and worm.

Fig. 1. Simplified scheme of the gear coupling (left) and the example of gear stiffness estimation using a
software based on the finite element method (right)

There are several possible approaches for including the GC in mathematical models of
multibody systems, and they can be divided by their complexity. The simplest approach is
based on the kinematic constraint formulation in the form of an algebraic equation. Consider-
ing the gear coupling from Fig. 1, the algebraic equation that fully constrains the rotation of the
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gears can be expressed as
riϕi − rjϕj = 0, (1)

where ri, rj are gear pitch circle diameters and ϕi, ϕj are the gear angles of rotation. Since
algebraic constraints are commonly used in problems of multibody system dynamics, several
methods exist to solve the resulting differential-algebraic equations. On the other hand, this
basic approach does not reflect any flexibility of the coupling and also no transverse vibrations
of gears are considered, which limits the possible usage of this simple model.

Another approach to describe the GC is the force-based model of the coupling. The basic
version couples only the rotational motion of the gears by using appropriately defined moments.
Considering the gear coupling from Fig. 1 again, the gear coupling moments Mj and Mi can be
expressed as

Fz = kz(riϕi − rjϕj) + bz(riωi − rjωj),
Mi = Fz · ri,
Mj = Fz · rj,

(2)

where Fz is the gear force, kz is the gear stiffness coefficient, and bz is the tooth damping
coefficient. This model allows a flexible transition of the rotational vibrations from one gear to
another. The estimation of the gear stiffness can be performed using analytical approaches [3],
or the software for structural analysis based on the finite element method can be used; see Fig. 1.
This simple force model can be enhanced by varying gear stiffness, kinematic transmission
error and teeth backlash that further affects the dynamic behaviour of the whole system [1].
For another improvement of this model, it is possible to include transverse, axial and tilting
motion of gears into the expression for teeth deformation, see [1], which makes this approach
sufficiently accurate and still computationally effective. This approach can be extended by teeth
normal and axial forces together with friction forces, which makes it more detailed.

The most complex force-based method utilizes the general contact of two bodies. In prob-
lems of multibody system dynamics, the contact model is most often formulated based on the
modified Hertz theory that includes damping in contact. This approach is the most computa-
tionally demanding because some algorithm for a contact of solid bodies needs to be employed;
thus, its usage in large systems is limited.

The typical software for simulations of multibody systems, such as Adams, Simpack, or
Recurdyn, often includes some GC modelling modules, which employ all mentioned methods.
Regarding Adams, its force-based approach does not include phenomena such as varying gear
stiffness and kinematic transmission error, and its kinematics is based only on the gear rotation
angles. Thus, there is still a possibility to extend this kind of modelling tool with the more
detailed GC force models, which are needed to be used when the motor-induced vibrations
can amplify through the GC to other system parts. This may lead to an increase in noise during
mechanism operation. The adequately chosen GC modelling approach helps to analyse possible
causes of highly vibrating parts that produce undesired noise.
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Supplementary aeroelastic analysis of modified 

LSA-category aircraft 

J. Čečrdle 
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Aircraft are required to have a reliability certificate including the aeroelastic (flutter) stability. 

Flutter analysis must include all applicable configurations of an aircraft in terms of fuel or 

payload. In the case of the aircraft modification, the appropriate aeroelastic assessment and 

supplementary analyses are required. Considering the general aviation aircraft, aeroelastic 

certification is usually based on the ground vibration test (GVT) and on the follow-on 

analyses using directly the GVT results [1]. The advantage of this approach is its simplicity 

and cost effectivity. On the other hand, the possibilities for the supplementary analyses in the 

case of an aircraft modification are limited. Submitted paper presents the practical application 

of such supplementary analysis.  

Subjected aircraft is a two-seat all-composite low-wing LSA-category aircraft. The 

wingspan is 8.0 m, length is 6.5 m, maximal take-off weight is 600 kg. The design velocity is 

set as VD = 300 km/h.  

Aeroelastic analysis is based on the experimental data gained by the previously performed 

GVT of the unmodified aircraft. The changes of the structure and their influence on the 

structural characteristics are summarised in Table 1. 

Table 1. Structure changes and their influence on structural characteristics 

Structure change description Influence on mass and stiffness description 

Flap (simple hinge flap instead of a split flap)  No influence on the wing stiffness. Only mass change 

to be considered. 
Aileron (installation of balance weight including the 

arm) 

Control surfaces are considered rigid. No influence on 

the wing stiffness. Only mass change to be considered.  
Wing (reinforced spar web in the central part – inside 

fuselage)  

Influences the wing stiffness. The influence on the 

appropriate modes to be assessed. Mass change to be 

considered as well. 

Payload increase (pilots, fuel, luggage, parachute) No influence on the wing and fuselage stiffness. Only 

mass change to be considered. 

 

The item with the influence on the structural stiffness is the wing spar reinforcement. 

Therefore, the influences on the appropriate wing and fuselage vibration modes were assessed 

as summarised in Table 2. 

Considering the expected increase in the 1st symmetric wing bending mode frequency, 

very simple measurement of this mode was performed. Tested aircraft was suspended using a 

rubber hanger. Sensor instrumentation included two pairs of accelerometers on both sides of 

the wing and a single accelerometer on the fuselage. The symmetric excitation was realised by 

a weight release. Measured vibrational time domain response was evaluated. The correct 

mode was identified within the expected frequency range by the evaluation of the phase 
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Table 2. Wing spar reinforcement – influence on vibration modes 

Mode  GVT freq. (Hz)  Influence description 

1st symmetric wing bending 8.57 

Symmetric bending deformation of the wing is mainly in the 

central part of the wing (inside fuselage). Thus, increase in 

the natural frequency is expected. 

1st lateral fuselage bending 10.57 

Main bending deformation of the fuselage is at the rear part 

(behind the cabin). Thus, no significant influence on the 

fuselage deformation is expected. 

1st vertical fuselage bending 11.17 

Main bending deformation of the fuselage is at the rear part 

(behind the cabin). Thus, no significant influence on the 

fuselage deformation is expected. 

1st antisymmetric wing 

bending 
15.03 

Antisymmetric bending deformation of the wing is mainly in 

the out-of fuselage part. Thus, no significant influence is 

expected. 

1st symmetric wing torsion 32.33 
Torsional deformation of the wing is mainly in the out-of 

fuselage part. Thus, no significant influence is expected. 

 

relations among the sensors. The frequency (f), logarithmic decrement (υ) and damping ratio 

(ζ) were evaluated using standard equations. 

As regards to mass changes, the empty weight of the aircraft increased from 280.5 kg to 

300 kg (structural changes, parachute) and payload increased from 169.5 kg to 300 kg (pilots, 

fuel, luggage). The maximal take-of weight increased from 450 kg to 600 kg. 

Flutter analyses were performed using g-method. This method transforms aerodynamic 

matrix into the stiffness matrix (real part) and into the damping matrix (imaginary part). The 

method generates real physical damping prediction directly at the specified velocities. 

Analyses were performed at several flight altitudes within the certification envelope (from 

H = 0 to 3000 m). Velocities were ranging from V = 10 m/s to 200 m/s. Non-matched analysis 

was employed, i.e., a single (reference) Mach number (MREF) was used within the whole 

range of velocities. MREF = 0, i.e., incompressible flow was considered. This fact must be 

considered in the result evaluation. Flutter results up to the certification velocity 

(1.2*VD = 100 m/s) may be considered as physically correct as the effect of compressibility is 

negligible up to this velocity. The results for higher velocities represent just artificial results 

for evaluation of the rate of reserve with respect to the certification velocity. This is the 

ordinary practice in aeroelastic analysis. Structural damping was considered using viscous 

model and common damping ratio (g) of 0.02. This is the realistic estimation of the damping 

with respect to the results of the GVT. Optionally, g = 0.03, which represents the maximal 

value acceptable by the regulation standards was used.  

Aerodynamic model included the wing, horizontal tail, and vertical tail surfaces. 

Aerodynamic panels were divided with respect to the geometry including control surfaces and 

tabs. Interpolation between the structural and aerodynamic model (transfer of displacements  
 

 
Fig. 1. (a) Aerodynamic mesh, (b) interpolation points 
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and load between both parts) was realised using Infinite Plate Splines. Appropriate structural 

points (wing, aileron, aileron tab, etc.) were connected to the appropriate aerodynamic 

elements. Fig. 1 shows the aerodynamic mesh and the interpolation points. 

GVT data (modal model) included 30 modes in total with the frequencies up to 90 Hz. 

These modes represent vibration modes of the main structural parts (wing, fuselage, vertical 

tail, horizontal tail) and control surface flapping modes. Full-span model was used, thus both 

symmetric and antisymmetric modes were included to analysis. Control surface flapping 

modes were considered for fixed stick (pedals) condition. The reason is that the frequency of 

the mode with the free stick (pedals) condition is either very close to the frequency of the 

mode with the fixed stick (pedals) condition (for elevator) or was not measured (otherwise). 

Additional mass points representing the structure changes were added into the flutter 

solution as mass perturbation matrices, which are added into the unperturbed generalized 

mass matrix. The mass perturbation option provides a change in the mass distribution of the 

structure without any change within the GVT data. 

Analyses included two variants of the fuel load: 26 lt (25 %) and 104 lt (100 %). Identified 

flutter states are summarised in Table 3 (ordered by the flutter frequency).  

Flutter speeds for both analysed configurations are summarised in Fig. 2. It is obvious 

from the figure that the states of rudder flutter and of aileron flutter are appearing within the 

certification envelope, i.e., below the velocity of 100 m/s. Considering the structural damping 

of g = 0.03, which is the maximal value acceptable by regulation standards, the aileron flutter 

with the character of a hump can be eliminated. Contrary to that, the rudder flutter instability 

is remaining within the certification envelope even for g = 0.03 (dotted line in the figure).  

Due to the above-mentioned fact, the detailed assessment into the rudder flutter instability 

was performed. First, the flutter primary modes and the main contributing modes were 

evaluated. Seven modes were evaluated as contributing. From these modes a pair of primary 

modes (Rudder Flapping, Fuselage Lateral Bending) and a one more significantly 

contributing mode (Empennage Rolling) were evaluated. Next, the effect of a change in the 

frequencies of these three modes were evaluated. From this evaluation, the maximal positive 

effect onto the flutter speed was found for an increase in the Fuselage Lateral Bending mode. 

However, it is not feasible to make a simple structure change to provide this. 

Table 3. Flutter states 

Title  Abbr.  ~ fFL (Hz) Description 

Rudder flutter RUDD 9.5 

Rudder flapping mode coupling with the empennage rolling 

mode and with the fuselage lateral bending mode which both 

induce the fin bending and torsional deformation respectively.  

Antisymmetric wing 

aileron flutter 
AILA 11.5 

Aileron antisymmetric flapping mode coupling with the wing 

antisymmetric bending mode, also the lateral engine vibration 

mode including the wing torsional deformation is contributing. 

Wing unsymmetrical 

flutter 
WLA 14.5 

This is the wing aileron flutter with the dominant deformation 

at the port side only. It is caused by the structure unsymmetry. 

Symmetric elevator 

flutter 
ELEVS 15.0 

Symmetric elevator flapping mode coupling with the fuselage 

vertical bending and with the tailplane bending deformations. It 

has a character of a hump instability 

Antisymmetric wing 

aileron flutter 
AILA2 16.3 

This is another type of the wing bending torsional aileron 

flutter. It has a character of a hump instability 

Wing and elevator 

flutter 
W+E 20.5 

Flutter with the dominant deformation at the starboard wing 

and at the port tailplane. It is caused by the structure 

unsymmetry. 

Antisymmetric 

elevator flutter 
ELEVA 30.6 

Antisymmetric elevator flapping mode coupling with the 

tailplane antisymmetric bending deformations. 
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Fig. 2. Flutter speeds (a) fuel 26 lt, (b) fuel 104 lt 

Further, the effect of the rudder massbalance was assessed. Note that rudder was not 

massbalanced. Mass parameters of the rudder structure considering two options of rudder 

(made of glass-fibre or of carbon-fibre composites) were evaluated. Massbalance weight was 

simulated at the leading edge of the rudder between both attachment points. Three variants of 

weight layout (full-length, lower-half, upper-half) were considered. The massbalance weights 

for a static balance were calculated for these six options. In addition, the conditions of the 

rudder dynamic balance with respect to the major flutter-contributing modes (Fuselage 

Lateral Bending and Empennage Rolling) were assessed. In both cases, the static balancing 

was found to be sufficient also for the dynamic balancing. Next, flutter analyses considering 

statically balanced rudder were performed for the above-mentioned options. Flutter speeds of 

the rudder flutter were found sufficiently above the certification velocity. Finally, the 

optimization of the massbalance weights were performed, i.e., the minimal massbalance 

weights to keep the flutter speed above the certification threshold were calculated for the 

above-mentioned options. These calculations were performed for the most critical case, i.e., 

fuel of 104 lt and H = 0.  

To conclude, it may be stated that the requirement of the regulation standard for the design 

velocity of VD = 300 km/h is fulfilled provided that the appropriate rudder massbalance 

weight is applied. Otherwise, the reduced value of VD must be applied for the subjected 

aircraft. 
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1. Introduction
Richards’ equation is widely used to study groundwater dynamics of saturated/unsaturated
porous media, with problems ranging from oil industry and geotechnical engineering to agricul-
ture and earth science. The numerical solution of Richards’ equation can be troublesome and
costly because of abrupt changes in the nonlinear hydraulic properties [1]. Typically, Richards’
equation exhibits sharp wetting fronts moving dynamically in the unsaturated zone while the
saturated zone remains relatively smooth. Wetting fronts may be so sharp that spurious oscil-
lations (overshoots/undershoots) appear. Increasing mesh discretization with local adaptation
(h-adaptation) is one well-known remedy [1]. High-order methods are known to reach accuracy
with a reduced cost compared to low-order methods. In that context, the use of local space
order approximation (p-adaptation) is a quite natural direction to be explored in order to assess
the possible gains for the solution of Richards’ equation. However, there have been few at-
tempts of high-order applications to Richards’ equation in the literature [2, 3, 5]. Besides, their
conclusions have remained unclear about what high-order accuracy can specifically achieve for
Richards’ equation because these studies applied general-purpose strategies where mesh and
order adaptations are used in combination (hp-adaptation). Firstly, this makes the benefits of
high-order accuracy difficult to evaluate. Secondly, these general strategies imply many numer-
ical and computational tools making them difficult to implement and costly to compute. This
last statement is even more questionable in regards of Richards’ equation which is known to be
quite challenging to solve numerically and whose solvers need to be as robust and efficient as
possible. Thereby, there is room to explore high-order methods applied to Richards’ equation.

To this end, discontinuous Galerkin (DG) methods will be employed in this paper. DG
methods are particularly suitable for high-order accuracy. Indeed, they rely on an element-
wise weak formulation which can be seen as a generalization of the Finite Element or the
Finite Volume frameworks. This makes DG methods flexible and attractive to design high-
order schemes which can be locally adapted. In this study, the p-adaptive algorithm is kept
simple in order to prevent computational complexity and, if needed in the future, to make the
extension to hp-adaptation as easy as possible.

Firstly, Richards’ equation and hydraulic properties are briefly introduced. Then, Richards’
equation is discretized with a DG method for space and with Backward Differentiation Formula
(BDF) methods for time. The adaptivity algorithm is also outlined. Finally, a test-case is
presented to show the abilities of the numerical methods.
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2. Model problem
Richards’ equation is a degenerate nonlinear parabolic equation which models flows in variably-
saturated porous media [1]

∂tθ(ψ)−∇ · (K(ψ)∇(ψ + z)) = 0, (1)

where K is the hydraulic conductivity [L·T−1] and z is the elevation [L]. This equation can be
rewritten in terms of hydraulic head h = ψ + z [L], a more common variable in hydrology

∂tθ(h− z)−∇ · (K(h− z)∇h) = 0. (2)

Solving Richards’ equation (1) requires two constitutive laws: one for water content and
one for hydraulic conductivity. For practical purposes, it is assumed that

K(ψ) = KsKr(ψ) and Se(ψ) =
θ(ψ)− θr
θs − θr

, (3)

where Ks denotes the intrinsic or saturated hydraulic conductivity tensor [L ·T−1], Kr the rela-
tive hydraulic conductivity [-], θs the saturated water content [-] and θr the residual water content
[-], corresponding to the maximal and minimal saturations, respectively. Se and Kr are mono-
tonic increasing functions of pressure head ψ in the unsaturated zone (ψ < 0) and constant in
the saturated zone (ψ ≥ 0). Several relations exist to model these hydraulic properties. In this
paper, the van Genuchtem-Mualem relations will be used

if ψ ≥ 0, then Se(ψ) = Kr(ψ) = 1, (4)

if ψ < 0, then Se(ψ) = (1 + (α|ψ|)n)−m and Kr(ψ) = Se
0.5
(
1−

(
1− Se

1
m

)m)2
, (5)

where α the parameter linked to air entry pressure inverse [L−1], n > 1 the pore-size distribution

[-] and m = 1− 1

n
the pore-size distribution [-].

3. Numerical methods

3.1 Discontinuous Galerkin discretization

DG methods rely on an element-wise weak formulation which share properties from both the
Finite Element and the Finite Volume frameworks which makes them flexible and attractive to
design high-order schemes and local adaptation. Extensive introduction can be found in Rivière
[4]. In this paper, Richards’ equation is discretized in space by a DG method called incomplete
interior penalty Galerkin (IIPG) because it is the simplest one. For time discretization, BDF
methods with variable time step are chosen because they provide high-order implicit schemes
in time which are needed if one wants to take advantage of high-order accuracy in space. For
further developments about DG and BDF methods for Richards’ equation, the reader is referred
to Clément et al. [1].

Careful considerations should be given to the choice of the basis for the expansion of the
solution when using high-order DG approximations. Indeed, modal bases which are orthogonal
and hierarchical present enjoyable properties compared to other bases like nodal bases. Their
hierarchical design helps the implementation along and their orthogonality provides better nu-
merical behaviour at high-order like a low condition number for the matrices of the discrete
system. In addition, integration quadrature formula should be in accordance with the maximum
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order of used polynomials. In this study, the Legendre’s polynomials are used because this is
one of the simplest and most suitable basis for high-order. For quadrangle elements, a tensor
product is performed in each direction.

3.2 Adaptivity algorithm

The adaptivity algorithm is made of three main steps which are sketched in Fig. 1. The first
step is the evaluation of a criterion η, or better an error estimator, on each element to indicate
the area of interest. In this study, the criterion is heuristically-based and aims at measuring the
numerical smoothness of the solution through the volume residual, the solution jump and the
flux jump, see [1]. The second step is the selection of the elements where the approximation
order will be increased or decreased. To do this, the criterion is compared to user-defined
threshold values 0 < βd ≤ βi. For βd ≤ η < βi, the element order remains unchanged. For
βi ≤ η, the element order is increased by one. For η < βd, the element order is decreased by
one. The last step consists in transferring the solution from the previous order approximation
to the new one. Since the employed basis is hierarchical, the corresponding degrees of freedom
in the solution expansion are truncated in case of order decrease, or extended by zero values in
case of order increase. The adaptation process is not performed at each time step but according
to a user-defined frequency.

Fig. 1. Adaptivity algorithm for the present p-adaptive strategy

4. Numerical results
Numerical results are evaluated with a 1D vertical downward infiltration problem called Pol-
mann’s test-case which is described in [1]. The computational domain is a rectangle (0, 20) ×
(0, 100) cm. The test-case is solved for pressure head ψ during T = 48 h with a constant time
step τ = 120 s. The initial condition is ψ0 = −1000 cm. The implicit Euler scheme is used (1-
step BDF method). The parameters of Van Genuchten-Mualem relations are Ks = 9.22× 10−3

cm·s−1, θs = 0.368, θr = 0.102, α = 3.35 × 10−2 cm−1 and n = 2. Three computations are
carried out: one for a mesh M100 of 100 elements of order one, one for mesh M400 of 400
elements of order one, and one for p-adaptive mesh of 100 elements. In the latter case, order
varies from 1 to 3, βd = βi = 0.05 and adaptation is done every 5 time steps.

Results are presented in Fig. 2. The left and middle figures show the abilities of the p-
adaptive computation to follow the wetting front in time. The right figure compares the different
computations. For the mesh M100, the solution holds an undershoot ahead of the wetting front.
For the mesh M400 and p-adaptation, the oscillations in the solution vanish.

5. Conclusions
The paper shows that Richards’ equation solution can benefit from high-order DG methods.
One finding is that high-order approximation can suppress oscillations at the wetting front.
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Fig. 2. Wetting front evolution (left), element order adaptation (middle) and comparison of pressure head
profiles (right)

This is quite unexpected because wetting fronts are sharp features lacking smoothness. Since
high-order approximation everywhere is costly, p-adaptation is necessary. A simple adaptivity
algorithm was designed to follow dynamically the wetting fronts of Richards’ equation where
the approximation order is locally increased to remove the oscillations.

In order to take the most of high-order methods, especially in case of adaptation, lots of
numerical and computational tools must be implemented. This is a challenging task and the
computational cost may be increased. The choice of DG methods with orthogonal and hierar-
chical modal bases allows to alleviate some efforts. High-order time accuracy is needed if one
wants to use high-order space accuracy. That is why BDF methods with variable time step are
employed.

This study raises an interesting question to know whether p-adaptation is worthy in case of
Richards’ equation because previous studies in the literature [2, 3, 5] do not use p-adaptation at
the wetting front but in smooth regions. In addition, p-adaptation is often used in combination
with h-adaptation to make hp-adaptation. Toward this direction, further research is needed to
assess p-adaptive simulations of Richards’ equation.
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Periodical solution of n-DOF parametric system vibration 
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1. Introduction 

The contribution deals with usage of periodic Green´s function (PGF) to periodic solution of 

linear vibrating systems described by time dependent coefficient matrices. The PGF enables to 

transfer system of 2nd order ODE to the system of integral [1, 2, 4] and integer-differential 

equations [3] and its analytical solution. Behaviour of several mechanical objects such as non-

symmetrical rotors can be described by system of linear ordinary differential equations of the 

2nd order. This system in matrix form is represented by matrices of mass, damping, stiffness 

and excitation force vector. The mentioned matrices especially for non-symmetrical rotors have 

time dependent periodic form. Assuming the excitation is periodic too, the equation of motion 

can take a form 

              0 0 0 ,t t t t t t t               M M q B B q K K q f  (1) 

where 

                , , , ,t t T t t T t t T t t T       M M B B K K f f  (2) 

T is period and 2 /T   is basic angular frequency. For the reason of periodicity the matrices 

and force vector can be expressed by Fourier series (let us mark   ik t

ke t e  ) 

                , , , .
N N N N

k k k k k k k k

k N k N k N k N

t e t t e t t e t t e t
   

      M M B B K K f f  (3) 

2. Periodic Green’s function 

Periodic Green’s function is matrix function whose j-th column is system response to excitation 

in the j-th place to force in the form of Dirac train with period T. This excitation in j-th place 

and Dirac train [1] can be written in form 

    
1 1

,
N

j T j k

k N

t e t
T T




 i i  (4) 

where ij is j-th column of identity matrix. The response taken into account corresponds to the 

stationary part of left hand side of Eq. (1) 

              0 0 0

1
.

N
j j j

j k

k N

t t t e t
T 

   M q B q K q i  (5) 

The PGF after some arrangements has form 

      
1

2 2 ,

0 0 0

1
, .

N
n n

T k k k

k N

t e t k ik
T

 




     H L L M B K C  (6) 
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N corresponds to the number of respected terms in Fourier series. Solution of (1) is identic with 

solution of integer-differential equation 

 

             

         

0 0

0 0

.

T T

T T

T T

T T

t t s s s ds t s s s ds

t s s s ds t s s ds

    

   

 

 

q H M q H B q

H K q H f

 (7) 

The last equation can be rewritten after some arrangements into form 

         ,t t t t  q E γ E β E α  (8) 

where          , 2 1 ,

1, , , ,
n N n n n

N N Nt e t e t e t


      E I I I C I R  is identity matrix. 

Vectors of coefficients are result of solution to Eq. (7). 

3. Conclusion 

The results and detailed procedure of solution of Eq. (7) will be presented during oral 

presentation. This result relation (8) enables next possibilities for the solution of equation of 

motion (1), e.g. response to random excitation on the right hand side of Eq. (1) or solution to 

the same equation whose matrices on the left hand side contain random parameters. 
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Local phenomena in tilting-pad journal bearing’s pivot
Š. Dyk, J. Rendl, R. Bulı́n, L. Smolı́k
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Tilting-pad journal bearings (TPJBs) are often used to support rotating machines where high
load-carrying capacity is needed. The tilting motion of the pads is secured by various joint
types: rocker-back pivots, cylindrical coupling or ball-and-socket. The latter, which we focus
on, brings several design advantages. However, it also generates additional friction moments
that negatively affect the bearing’s behaviour with respect to the static equilibrium path and
stability [4, 5].

As shown in the previous research [2], one of the key factors in modelling TPJBs behaviour
is a normal force in ball-and-socket coupling. Usually, the Hertz theory is used for the contact
force description. However, considering the conforming contact of the ball-and-socket bodies,
the assumptions of the Hertz theory are not satisfied, and a theory for conformal contact should
be used. Here, we use a Fang theory [1] for the inner contact of two spheres which describes a
pressure distribution in such contact.

As noted before, the friction in ball-and-socket coupling plays an essential role in the bear-
ing’s performance. For the friction description, we use representatives of both statical and
dynamical friction models: the Bengisu-Akay and the LuGre model. The latter allows a de-
scription of such phenomena as stick-slip transitions, presliding or frictional lag. However, the
dynamic models are tricky from the viewpoint of parameter estimation.

Pad 1Pad 2

Pad 3 Pad 4

ω circumferential 

angle

Ff,i

δi, δi

.
rp,i Ni

vp,i

Fig. 1. A scheme of the considered TPJB and a detailed view of the ball-and-socket pivot with empha-
sised friction force

As a benchmark model, we use four-pad TPJB with the load-between-pads configuration,
see Fig. 1. For simplicity, the rotating part is represented by a simple Jeffcott-like rotor: a jour-
nal with vertical and horizontal displacements as degrees of freedom. Moreover, since we focus
on the local behaviour of pads’ pivots, we omit upper pads – the previous analyses [3] showed
that they are not carrying a load and are rather subjected to pad fluttering.
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Fig. 2. Journal orbit for various friction coefficients, tilting velocity of one of the lower pads and the
hysteresis loops of the considered cases

As shown in Fig. 2, the friction strongly affects the pads’ tilting motion concerning velocity
amplitudes, stick phases near zero velocity, and dissipation properties, as demonstrated via
hysteresis loops. As a consequence, the orbit gets larger with an increasing friction coefficient.
We also show a crucial influence of friction parameter settings, e.g., critical velocity, bristle
stiffness and damping of the LuGre model, etc.

The proposed model provides a comprehensive basis for further research focusing on the
interferences between friction phenomena in ball-and-socket couplings and the unloaded upper
pads behaviour.
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Device for measuring the stiffness of the tensile nylon springs 
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1. Introduction 

Twisted and coiled nylon fiber actuator represents a soft actuator (also called as an artificial 

muscle) which is suitable to realize smooth and soft motion of machines and robots. This type 

of actuator is fabricated by twisting nylon fibres (e.g. fishing line) into helical state and in the 

final, it looks like a preloaded tensile nylon spring (Fig. 1 left). 

Cold nylon spring actuator is stretched due to tensile load and its shortening is realized by 

heating. Thus, the actuator's operation can be controlled by changing its temperature. Actuator 

heating is realized by hot air blowing, warm water bypass or by electric Joule heating 

(Fig. 1 right). The advantage of this actuator is simple and cheap production, outstanding power 

density and large deformation. These actuators are referred to as Twisted-Polymeric-Fibre 

Actuators (TPFA), while the nylon fishing line is commonly used to produce them. A more 

extensive overview of TPFA can be found in [2, 4, 5]. 

 

 

Fig. 1. Twisting process of the nylon fiber into the shape of a spring (left) [2], reaction of nylon fiber spring 

on adding mass and reaction to temperature change (right) [2] 

To analyze the functionality of a nylon spring by the computational methods [3], it is 

necessary to know its mechanical and thermal properties. This paper presents a device that can 

be used to measure the basic mechanical property of nylon springs - tensile stiffness. Spring 

stiffness is measured either by a quasi-static test (stretching of the spring) or a dynamic test 

(mass vibration) [1]. Data acquisition system is implemented using the Arduino platform. 
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2. Measuring device 

From a technical point of view, the device consists of a supporting structure, two strain gauge 

load cells, a linear actuator with a built-in potentiometric position sensor, control electronics 

and a touch screen (Fig. 2). [1] 

Linear actuator is used for continuous stretching of the spring and is powered through 

a driver for DC motor. Load cells measure the tensile force in the spring. Voltage signal from 

the load cells is converted into digital form using 16-bit sigma-delta analog-to-digital converter 

(ADC). Arduino Mega controller is used as the control unit for the entire device, which also 

serves as a data acquisition system. Control of the measurement system is solved using a touch 

screen, on which the measured graphic curves for individual measurements are also drawn. 

 

 

Fig. 2. Measuring device [1]: 1 – touchscreen, 2 – loadcells, 3 – ADC, 4 – linear actuator, 5 – manual control, 

6 – electronics and data acquisition system 

The basis of the electrical wiring of the device is the so-called shield, i.e. the expansion 

board with the connection pins located on the underside of the board (Fig. 3 left). These pins 

connect the shield directly to the Arduino Mega microcontroller board. On the shield’s top side, 

there are connectors for other individual electronic parts and modules of the measuring and 

control system (Fig. 4). The shield also contains a couple of ceramic filter capacitors, a reset 

button, a couple of indicator diodes with their resistors, and a screw connector for 5 V power 

supply from DC-DC converter (Fig. 3 right). 

A special voltage transducer was designed and used to measure the force in the dynamic 

test (Fig. 3 right). This transducer converts low voltage output (0 to 4.6 mV) from load cell 

linearly to usable range (0 to 5 V) for applied ADC (module ADS1115). This output voltage is 

proportional to the exerted force on load cell from 0 to 50 N. Both the shield and the voltage 

transducer were designed in KiCAD software. 
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For quasi-static measurement method, the load cell in combination with module HX711 is 

used because it is more precise (24-bit). However, data processing by the HX711 module is 

slower than that of the ADS1115 module and is therefore not suitable for dynamic 

measurements. 

 

 

Fig. 3 Expansion board – shield (left), voltage transducer (right) [1] 

 

Fig. 4. Measuring and control system: actual wiring (left) and block diagram (right) [1] 

3. Spring stiffness measurement procedure 

Spring stiffness can be measured using two methods. The first method represents quasi-static 

stretching of the spring, when the tensile force and spring extension are measured. Spring 

stiffness in linear area of deformations is then calculated as the ratio of tensile force and spring 

extension by linear regression using least squares method (Fig. 5). Tensile force is measured by 

a load cell mounted on the upper fixed console of the device, and the spring extension is 

measured by a potentiometric position sensor located in the body of the linear actuator that 

stretches the spring. 

 

 

Fig. 5. Quasi-static measurement of the spring stiffness 
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The second method is a dynamic test, when a mass is hung on a spring attached to a load 

cell and allowed to oscillate (Fig. 6), it represents free vibration of 1-DOF mechanical oscillator. 

Before the start of the test, the load cell measures the weight of the suspended mass on the 

spring. Then the spring is manually stretched and released, creating a free vibration of the 

system. Load cell measures the time course of the force in the spring and natural frequency of 

the system is calculated using FFT (Fast Fourier Transform). Spring stiffness is then calculated 

from the known mass weight and system’s natural frequency. 

 

 

Fig. 6. Dynamic measurement of the spring stiffness 

4. Conclusions 

Due to the relatively large material damping of the nylon springs, the stiffnesses measured by 

both methods are slightly different. Better agreement is obtained when the steel springs are 

measured because their material damping is minimal. 

The measuring device has the following advantages: it is powered only by 12 V DC power 

supply, the device is light and easily portable, touch screen control that also displays the 

measurement results, the possibility of transferring measured data to a PC using SD card, and 

it is suitable in education process in the mechanics. 
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Multibody dynamics simulations of the railway vehicle
for heavy loads transport

M. Hajžman, P. Polach, P. Polcar
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Numerical simulations are efficiently used for the evaluation of the design of various mechan-
ical systems in pre-production states. Since the railway industry is very strictly controlled by
various standards and codes, the usage of computational models to verify proposed vehicle
design according to standards is quite convenient. This paper is aimed at the description of
the evaluation process for a special purposed 32-axle wagon (see Figs. 1 and 2) intended for
carrying large size and heavy loads.

Fig. 1. Visualization of the whole wagon multibody model in the SIMPACK software

Fig. 2. Visualization of the rear wagon section with two small bridges (red bodies) and one large bridge
(gray body) and half of the main bridge with payload

Railway vehicles are typical representatives of multibody systems that are composed of
kinematically constrained bodies [2]. The SIMPACK software was used as the main software
tool in this modelling task. The modelling methodology is based on the vehicle decomposi-
tion into particular design elements characterized as rigid bodies. Except for particular bogies
(each with four wheelsets), the modelled wagon is designed with several functional components
called bridges carrying payload. The wagon multibody model contains these main rigid bodies:
32 wheelsets, 8 bogie frames, 4 small bridges, 2 large bridges, and 1 main bridge (+payload
and/or platforms), see Fig. 3 for the kinematical scheme of the whole model.

The SIMPACK multibody formalism is formulated for relative coordinates between bodies,
and therefore each rigid body has exactly one kinematical joint. Other kinematical relations
are represented by so-called constraints. Several bodies, which form a functional group and are
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Fig. 3. Kinematical scheme of the wagon multibody model

repeated in the model, could be set as substructures. There are bogie substructures, composed of
a rigid body representing a bogie frame and four wheelset substructures. The bogie frame and
wheelset bearings are connected by force elements representing leaf springs [3]. Each wheelset
substructure contains the wheelset represented by one rigid body with six degrees of freedom
and coupled with the ground (basic frame) by so-called General Rail Track joint (GRTJ) related
to a defined track. The interaction of wheels and rails is ensured by a complex rail-wheel force
element, which represents spatial forces and torques between the wheel and the rail depending
on the wheel-rail design parameters and model kinematical variables.

Each two bogies are mutually joined with one small bridge (as it was already mentioned,
4 small bridges in total). The bogies and the bridge are connected using bushing force elements,
that substitute real spherical joints. Analogously, each two small bridges are mutually joined
with one large bridge (as it was already mentioned, 2 large bridges in total). The last mentioned
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design element of the wagon is the main bridge carrying possible a payload. The connection of
the main bridge and the large bridges is realized using movable support and central pins.

Fig. 4. Twisted track definition — top view

Fig. 5. Twisted track definition — curvature and superelevation
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Fig. 6. Time history of the wheel lift on the leading wheelset when running through the twisted track

The computational multibody model of the wagon was implemented to perform various nu-
merical simulations prescribed in railway standards. The main code utilized for railway vehicles
is EN 14363 standard ”Railway applications – Testing and simulation for the acceptance of run-
ning characteristics of railway vehicles – Running behaviour and stationary tests” [1]. At first,
the running of the wagon on a straight track by various velocities was numerically simulated.
It was followed by linearized modal analysis to investigate stability properties. The extensive
set of numerical simulations was dedicated to running on tracks with prescribed curvature and
given velocity. All tests were evaluated based on the standard using derailment coefficient and
wheel lateral forces. EN 14363 standard prescribes three possible methods [4] how to evaluate
the safety against derailment for railway vehicles running on a twisted track. Method 1 from
the standard was chosen as the evaluation method. It is based on the vehicle slowly running on
a twisted track with a 150 m radius (see Figs. 4 and 5), while the assessment criterion is the
outer wheel lift of the leading wheelset which has to be under 5 mm (see Fig. 6 for illustrative
results).
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Interpolation plays an important role in nowadays world. By interpolating data, we save time
and money in general. The main areas where interpolation is applied are robotics, automotive,
medicine, biology etc. One of the possible basis splines for interpolation are B-splines, which
are also used in Computer Aided Geometric Design (CAGD) due to their smoothness and local-
ity properties [5]. To fit a curve to a given set of points, B-spline can be used either in interpola-
tion or in approximation [5]. In this work we consider the application of B-splines (cumulative)
for the non-uniform interpolation of quaternions. This requires to overcome some difficulties.
Firstly it is necessary to compute control points (sometimes called de Boor points [4]) to fulfil
the basic interpolation property. Second problem is hidden in non-uniformity of data points as
formulas available for quaternion spline interpolation generally consider uniformly distributed
points [4]. The last problem lies in discretization: to achieve desired maximum error of the
interpolation we have to choose the proper density of interpolation points.

B-spline is a spline function driven by an independent parameter that will be denoted here
by t which usually varies from t = T0 to t = Tn, with T the knot vector (T0,..., Tn) and n
positive integers. The associated B-splines Bk

i of order k (degree = k − 1) are defined by [4]

B1
i (t) =

{
1 Ti ≤ t ≤ Ti+1,

0 otherwise
(1)

for k = 1 and

Bk
i (t) = t−Ti

Ti+k−1−Ti
Bk−1

i (t) + Ti+k−t
Ti+k−ti+1

Bk−1
i+1 (t), k > 1 and i = 0, 1, ..., n. (2)

We can now define B-spline curve [3]. With a given list of control points (also called de Boor
points), pi ∈ Rm (m ≥ 1), 0 ≤ i ≤ n, and a knot vector T, then B-spline interpolation of order
k (degree k − 1) is defined by

P (t) =
n∑

i=0

piB
k
i (t) for T0 ≤ t < Tn. (3)

With a given list of data points Pi ∈ Rm, 0 ≤ i ≤ n, corresponding with the knot vector T, we
can proceed with the B-spline interpolation of order k. First we need to compute control points
so that we ensure

P (Ti) = Pi, (4)
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which can be rewritten into the form

p0B
k
0 (Ti) + p1B

k
1 (Ti) + ...+ pnB

k
n(Ti) = Pi, 0 ≤ i ≤ n. (5)

This can be rewritten [5] into condensed matrix form for all rows

Ap = P, (6)

where

A =




Bk
0 (T0) Bk

1 (T0) . . . Bk
n(T0)

Bk
0 (T1) Bk

1 (T1) . . . Bk
n(T1)

...
...

...
...

Bk
0 (Tn) Bk

1 (Tn) . . . Bk
n(Tn)


 , where

{
p = [p0, p1, ..., pn]

T ,

P = [P0, P1, ..., Pn]
T .

(7)

With respect to the previous definitions we can define B-spline quaternion interpolation of or-
der 4 (k = 4, degree = 3), so that we achieve C2 continuity. We consider unit quaternion defi-
nition given by [2] in this work. With a given sequence of data points (data unit quaternions) Qi

(i= 0, 1,...,n), the interpolation can be proceeded by constructing the B-spline quaternion curve
Q(t) which interpolates a given sequence of unit quaternions Qi (i = 0, 1,...,n). The B-spline
quaternion curve is defined as

Q(t) = q
B̃0(t)
−1

n+1∏

i=0

(q−1i−1qi)
B̃i(t), B̃i(t) =

n+1∑

j=i

Bi(t), (8)

where qi are control points (’control quaternions’) and Bi(t) ≡ B4
i (t). To compute the control

points from non-uniform knot vector, we have to start with the condition Q(Ti) = Qi, so we get

q
B̃0(Ti)
0 (q−10 q1)

B̃1(Ti)(q−11 q2)
B̃2(Ti)...(q−1i−2qi−1)

B̃i−1(Ti)...

(q−1i−1qi)
B̃i(Ti)(q−1i qi+1)

B̃i+1(Ti)(q−1i+1qi+2)
B̃i+2(Ti)... = Qi.

(9)

It holds that B̃x(Ti) = 1, 0 ≤ x ≤ i− 1 and B̃y(Ti) = 0, i+2 ≤ y ≤ n+1, following this rule
we get

q0(q
−1
0 q1)(q

−1
1 q2)...(q

−1
i−2qi−1)(q

−1
i−1qi)

B̃i(Ti)(q−1i qi+1)
B̃i+1(Ti) · 1 = Qi, (10)

which can be rewritten as

qi−1(q
−1
i−1qi)

B̃i(Ti)(q−1i qi+1)
B̃i+1(Ti) = Qi, for i = 0, 1, 2, ..., n, (11)

Note that for uniformly distributed knot vector T, we can easily write

qi−1(q
−1
i−1qi)

5
6 (q−1i qi+1)

1
6 = Qi. (12)

Eq. (11) forms n+1 equations. Since the dominant term on the left side is (q−1i−1qi)
B̃i(ti) we can

use the iterative refinement procedure for the solution from [3] as

(q−1i−1qi)
B̃i(Ti) = q−1i−1Qi(q

−1
i qi+1)

−B̃i+1(Ti), (13)

q∗i = qi−1(q
−1
i−1Qi(q

−1
i qi+1)

−B̃i+1(Ti))
1

B̃i(Ti) , (14)

35



Fig. 1. Double wishbone suspension
example [1]
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Fig. 2. Angle θ between two successive data points (Qi

and Qi+1)

which is the iterative solution of the system of equations, assuming q∗i is a next iteration step of
qi. Already known formula for uniform B-splines is analogically given by [3]

q∗i = qi−1(q
−1
i−1Qi(q

−1
i qi+1)

− 1
6 )

6
5 . (15)

Because there are n+1 equations for n+3 unknowns q−1, q0,..., qn+1, two boundary conditions
are needed. The end conditions for natural spline are [3]

Q′′(0) = 0 and Q′′(n) = 0. (16)

When these two boundary conditions are applied to previous equation, we obtain non-linear
system of equations

q−1 = Q0(Q
−1
0 Q1)

−1, (17)

qi−1(q
−1
i−1qi)

B̃i(Ti)(q−1i qi+1)
B̃i+1(Ti) = Qi, for i = 0, 1, 2, ..., n, (18)
qn+1 = Qn(Q

−1
n−1Qn). (19)

As far as there is no other known method to compute the exact solution, the proposed iterative
method, Eq. (14), is utilized to solve this system. For the initial guess, qi = Qi is considered.
However, due to the non-linearity of the problem, there are some restrictions for the input values
of Qi, but this is not the topic of this conference paper.

We interpolated the orientations of classical double wishbone suspension support (Fig. 1) in
terms of vertical coordinate and we compared it with exact results. We chose the data so that
we ensure almost constant angle θ (Fig. 2) between two successive data points (Qi and Qi+1),
considering θ as an angle of axis-angle representation between two orientations. For the interpo-
lation we used 3 different look-up tables which differed in number of data points:n = 33,n = 49
and n = 98 (see Fig. 2), these data were compared with the data set of 500 members, so that
we can observe the interpolation error trend. The interpolation relative error was computed as
the relative angle between the exact and the interpolated orientation and divided by the constant
angle distance value (Fig. 2) and was denoted by θe. The results are shown in Fig. 3 and 4, the
latter being a zoom of Fig. 3 on the vertical axis.

Figs. 3 and 4 show that we successfully achieved interpolation property, i.e., zero error at
data points. The figures show that the highest interpolation error is at the beginning and at the
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Fig. 4. Interpolation error – zoomed

end of the interpolated interval in our case. Whatever the number of interpolation points the
highest interpolation error intervals are always given by the first and last k data points (k = 4
is the order of the interpolation). In case of high demand for low interpolation error at the
beginning or at the end of the interpolated interval it is possible to add more data points at the
beginning and at the end of the look-up table so that higher density of data points is ensured and
the high interpolation error interval becomes smaller, or it is possible to change the boundary
conditions. However, in practise it is not usual to achieve these end positions.

We can also see that the maximum interpolation error θe remains approximately constant
inside the interpolated interval, which means that the main impact on the interpolation error has
the development of angle θ between the two data points and the precision is not dependent on
the relative axis development, considering the axis-angle representation. We can see that for 33
data points (members of look-up table) we achieved θe ≈ 10−4, for 49 data points θe = 3×10−5
and for 98 data points θe is equal to zero inside the interpolated interval. As far as the proposed
interpolation fulfils C2 continuity, we found formulas for the first and second derivative to be
used for dynamics simulation of the suspension.
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The idea of using a heat source for increasing the propulsion efficiency an airplane equipped 

with piston combustion engine first appeared just before the Second World War. F.W. Meredith 

[1] describes the mechanism of a radiator placed in a duct inside an airplane’s structure and 

expresses the basic relations on the aerodynamic resistance of such a structure.  

The issue was further processed by H. Winter [3]. In his article: Contribution to the theory 

of the heated duct radiator, the author derived simple equations allowing to quantify the drag 

reduction of a radiator due to additional heat with enough accuracy for practical application. 

Such a relationship is an expression of the law of conservation of energy, where the heat 

transferred from radiator to ambient air corresponds to engine power - from this relationship, 

the flow rate in the channels can be easily estimated. The equation is expressed as follows 

𝜌0𝑣1𝐹𝑔 [(𝑖2 + 𝐴
𝑣2

2

2𝑔
) − (𝑖1 + 𝐴

𝑣1
2

2𝑔
)] = 𝑄, 

where  𝑖 =  
𝜅

𝜅−1
𝐴

𝑝

𝑔𝜌
  and 𝐴 =  

1

427
kcal/mkg. The amount of heat can be taken as a fraction of 

the engine power 𝑄 = 𝐴 ∝ 75𝑁 (for water cooled engines ∝≈ 0,5), 𝑖 is internal energy and 𝑁 

is engine power [hp]. Indices 1 and 2 correspond to sections in front of, behind the radiator 

respectively, 0 at the entrance to the channel. 

In a practical sense, the most famous aircraft using the heat from the radiator for thrust is 

probably the P-51 Mustang. However, the relevant publication was not available at the time of 

writing this post. 

However, the Me-109E concept described in [2] is also interesting. Small radiators are at 

Me. 109E and I. 110 are located in each wing. Attached is a sketch of this structure near the 

trailing edge of the wing (Fig. 1). It includes a mechanism for controlling the outlet flap from 

the channel, with which it is possible to regulate the flow of the cooler with an increase in local 

losses in the nozzle ("throttling"), which is important in reducing aerodynamic resistance at 

higher speeds. The author also caused large potential losses caused by the boundary layer, 

which in this case is significantly developed, since the entrance is on the underside of the wing.  

The cited articles are important in determining the methodology of this study and thesis. To 

quantify the contribution of residual heat to the reduction of aircraft drag, it is first necessary to 

describe the task analytically. The system of the following equations will serve the purpose: 

1. The energy difference in front of and behind the radiator is equal to the delivered heat 

Q [W], which can be expressed as a fraction of the engine power 

  

𝑚̇ [
𝑝1

𝜌0
−

𝑝2

𝜌2
+

1

2
(𝑣1

2 − 𝑣2
2)] = 𝑄 . 
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Fig. 1. Radiator duct of Me-109E 

 
Fig. 2. Reference sections of radiator duct 

 

 

2. The second important parameter is the pressure loss of the radiator ∆𝑝𝑐. Neglecting the 

supplied heat (we are talking about a so-called cold radiator), the pressure difference 

can be expressed by multiplying of the loss coefficient 𝑐𝑤 and the dynamic pressure at 

the inlet to the radiator 

∆𝑝𝑐 = 𝑝1 − 𝑝2 =
𝜌0𝑣1

2

2
𝑐𝑤 . 

3. When including the effect of supplied heat, this equation does not apply, because the 

change in dynamic pressure also plays a significant role here. The pressure loss of the 

"hot radiator" ∆𝑝ℎ is expressed as the difference of the dynamic pressures in front of 

and behind the radiator in the sum with ℎ · 𝑐𝑤 = 𝑐𝑤ℎ
 which is the loss coefficient of the 

hot radiator 

∆𝑝ℎ = 𝑝1 − 𝑝2 = 𝜌2𝑣2
2 − 𝜌0𝑣1

2 + ℎ · 𝑐𝑤 . 

The value of the coefficient h defines the dependence of the pressure loss of the cold 

and hot radiator. As part of the experiment, the goal is to obtain the value of this 

coefficient as a function of another known parameter (the literature refers to  
1

2
(𝜌2𝑣2

2 −

𝜌0𝑣1
2), however this is not validated). 

Radiator 

Wing’s bottom 

surface 
 

Wing’s upper 

surface 

Joints of variable 

jet 

Bypass 
 

Radiator 
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4. Remaining equations represent the application of the law of conservation of momentum 

and the equation of continuity between individual sections of the channel. 

𝑝1 − 𝑝0 = 𝜂𝐷𝑖

𝜌0

2
(𝑣1

2 − 𝑣0
2) ,       𝜂𝐷𝑖 −  diffuser efficiency , 

𝑝2 = 𝑝0 +
1

2
𝜌2𝑣2

2(𝛽2 − 1) ,            𝛽 –  section ratio AR/ A0  , 

𝜌0𝑣1 = 𝜌2𝑣2 . 

 

The output of the system of these equations is v2 = f (𝜌0; 𝑝0; 𝑣0; Q; 𝑐𝑤; 𝛽; 𝜂𝐷𝑖). Result can be 

expressed as decrease in the internal drag of a heated radiator in comparison with the unheated 

condition as the Function of duct opening ratio A3/AR (Fig. 3). 

 

     

Fig. 3. Decrease in the internal drag of a heated radiator in comparison with the unheated condition as the function 

of duct opening ratio A3/AR 

The results of this study were used for designing the flow path of the propulsion unit of the 

UL-391aircraft developed under the auspices of the Faculty of Mechanical Engineering of the 

Czech Technical University. Main goal was to optimize the existing structure in order to 

maximize the efficiency of the drive unit. Inlet part of the unit will be described. The goal was 

to create an inlet channel with the lowest possible losses and the most uniform flow field on the 

outlet cross-section (blower inlet). 

First, a simulation of the entire aircraft was 

carried out with the old variant of the drive. The 

boundary conditions at the inlet were taken 

from it for further calculations. Furthermore, 

a multi-criteria optimization was carried out 

using the adjoint in Fluent, with the help of 

which a significant improvement was achieved 

in terms of pressure losses in the channels. 

 

  

                                                 
The UL-39 Albi is a Czech project of a world-unique ultralight two-seater aircraft, built according to the model 

of the L-39 Albatros jet training aircraft. It is the only ultralight in which the engine does not drive the propeller, 

but the blower. The development version of the aircraft took off for the first time on April 4, 2016 at the airport 

in České Budějovice. 
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Fig. 5. CFD Analysis of inlet channel of UL-39 Albi 

Table 1. Results of CFD analysis of inlet channel - total pressure loss refering to improvement 

Velocity 

[m/s] 

Standard deviation of 

axial velocity 

Uniformity index of 

axial velocity 

Total 

pressure loss 

Averange magnitude of 

tangential velocity 

75 4,48% 0,68% 11,81% -1,17% 

70 5,46% 0,76% 15,39% -0,67% 

55 7,58% 0,91% 23,96% 3,92% 

40 7,91% 0,95% 30,78% 5,82% 

25 2,55% -1,26% 12,90% 2,15% 
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1. Introduction
Topology optimization (TO) is a popular method for designing innovative components. Its goal
is to find the optimal material distribution in the design space based on predefined boundary
conditions and constraints. TO is most commonly used in the conceptual phase of the design
process. However, with the development of additive technology and post-processing methods,
the possibilities of using TO results directly for manufacturing are beginning to emerge.

The seminal paper that laid the foundations for the development of topology optimization
is considered to be the work of Bendsøe et al. [1]. Since then, the development of TO has
taken several directions, and nowadays, many different methods can be found in the literature.
An overview of known TO methods can be found, e.g., in the review article [2]. Nevertheless,
the most common TO approaches are density-based, especially the SIMP method, which stands
for Solid Isotropic Material with Penalization. This method’s results are unsuitable directly for
manufacturing, so post-processing is required.

In this paper, the optimization problem of minimizing compliance with a constraint on the
volume fraction will be formulated first. Then the SIMP method will be introduced. This
paper’s main contribution lies in using the level-set principle combined with RBF for post-
processing the results obtained by the SIMP method. In the final part, the proposed method for
post-processing of the topologically optimized gripper of an industrial robot will be applied.

2. Compliance minimization problem
A typical topology optimization problem is to find a maximally stiff structure with respect to
its loads and supports. The constraint is the volume fraction, i.e., a certain ratio between the
volume of the structure and the volume of the design domain in which the optimization is
performed. Such a problem can be described by minimizing an objective function c (twice the
strain energy) with a constraint on the volume fraction f , i.e.,

min
ρ

: c(ρ) = UTKU =
N∑

e=1

Ee(ρe)u
T
e k0ue

subjected to : V (ρ)/V0 = f, (1)
0 ≤ ρ ≤ 1,

where U is the global displacement vector, F is the global stiffness matrix, ue is the displace-
ment vector of the element, k0 is the stiffness matrix of the element with the corresponding
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Young’s modulus Ee, N indicates the total number of elements, V (ρ) is the current volume of
the material, and V0 is the volume of the design domain.

2.1 Modified SIMP method
The SIMP method belongs to the class of Density-based methods and is one of the most used in
TO. It employs finite elements to describe the shape, assigning each element a kind of impor-
tance known as fictitious density. This fictitious density (design variable) is used to calculate
Young’s modulus Ee(ρe) of each element.

The result of the SIMP method is a scalar field of fictitious densities ρ, where each element
is assigned a constant fictitious density ρe. This result can be used by the designer to get a basic
idea of the shape of the part but cannot be used directly for manufacturing. Post-processing is
required to obtain the shape from the TO results. In the case of 2D objects, post-processing can
be done by simple sketching in CAD software. For more complex solids, it is necessary to use
automated techniques.

3. Post-processing the results with the level-set technique
TO has become integral to many finite element systems and even some CAD programs. These
systems usually use Density-based methods to obtain the optimal material distribution. The
main advantage of these methods is their robustness. However, the results are highly dependent
on the quality of the mesh, the filter parameters, and the post-processing type. Conventional
post-processing methods average the element densities into nodal values and consequently in-
terpolate them, most frequently with linear polynomials. It yields onlyC0 continuous geometry,
which is usually unsuitable for downstream processing. Some software uses B-spline curve seg-
ments to smooth the geometry, but here the results are of much higher quality. Unfortunately,
all available software offers little or no user customization in terms of post-processing.

This section proposes two approaches to construct the level-set (LS) function. Both ap-
proaches use radial basis functions (RBFs) to construct the level-set function. RBFs are suit-
able for post-processing due to their ability to smooth the geometry but still preserve the shape
complexity of the optimized shape [3].

3.1 Density in nodes approach
This post-processing approach uses RBFs to construct a LS function. RBFs can only be used in
nodes of a regular grid. If the optimization has been performed on an irregular mesh, the entire
design space must be packed into a so-called bounding box and this space discretized with a
regular grid. The procedure for computing the node densities of a regular grid is as follows.
First, the density at the nodes of the original grid has to be computed. This can be done by
taking the continuous density in the elements to the geometric center of the elements and then
using the least squares method to compute the density at the nodes. Subsequently, the density at
the nodes of the regular grid can be calculated using shape functions. By placing the RBFs (2)
in the nodes of the regular network with appropriate weights so that the sum of these functions
at the nodes of the regular network corresponds to the nodal values, we obtain an implicit LS
function. The zero level of this function corresponds to the geometry of the shape.

Ni(x) = exp

[
−
(‖x− xi‖

B

)2]
(2)

The described approach has been tested on a gripper of an industrial robot. From the results
shown in Fig. 1, it can be seen that this method gives smooth results, but has the characteristics
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Fig. 1. Post-processing result of the topologically optimized gripper of an industrial robot

of a filter, i.e., it ”blurs” the shape complexity of the component in places where there is a step
change in the TO results between empty and full space.

3.2 Approach based on signed distance function
Another approach for post-processing is based on a signed distance function. This function as-
signs to each point in the control area the shortest distance to the boundary of the solid, including
a sign, so it is possible to distinguish whether the point is inside or outside the solid. To con-
struct a discrete form of the distance function, the density field was nested in a regular Cartesian
grid, and for each vertex of this grid, the closest point to the boundary of the solid was found.
The density isocontour defines the boundary of the solid. This threshold density boundary was
computed to respect the volume fraction. The distance field was used as a weighting factor for
RBFs to construct the LS function. The zero level of the implicit LS function corresponds to
the geometry boundary.

The approach has been tested on a 3D beam. From the results in Fig. 2, it can be seen that a
very smooth geometry was achieved, and no complications in the boundary regions.

Fig. 2. Example of 3D beam test geometry. Above is the original C0 continuous geometry and below is
the smoothed shape
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4. Conclusions
The last part of the paper describes two post-processing procedures using the LS method. The
construction of the LS function itself was performed using Radial Basis Functions. The first
approach uses the nodal densities as weights of the RBFs, while the second obtain these weights
from the distance field. The results from the first approach are very smooth. However, there
is a blurring of shape complexity at the points of sharp transition between the elements of the
original mesh and the empty space (i.e., high-density elements and empty space). The second
post-processing approach seems to be more appropriate because of its ability to describe even
shape-complex objects. This capability to describe shape is due to the density of the control
region discretization.
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1. Introduction
This paper is focused on the comparison of the real and ideal gas models for the case of the
compressor for the secondary cooling circuit for gas-cooled nuclear reactor developed in the
frame of KOBRA project. Real gas model is defined by polynomial model from Baehr and
Schwier [1]. Both models are compared and used for the stage design of the axial compressor.
The comparison is performed for the case of the isentropic compression corresponding to the
parameters of the KOBRA compressor for the secondary cooling circuit. The dependence of
the real gas parameters on the temperature is presented and relative error in comparison with
the ideal gas model is determined.

2. Methods
Following functions were programmed in the MATLAB environment with the mathematical
model from [1]:

• h (T, v),

• s (T, v),

• cp (T, v),

• cv (T, v),

• p (T, v),

• v (T, p),

• T (p, v),

where h [J.kg−1] is the enthalpy, T [K] is the temperature, v [m3.kg−1] is the specific volume,
s [J.K−1] is the entropy, cp [J.kg−1.K−1] is the specific heat capacity at constant pressure, cv
[J.kg−1.K−1] is the specific heat capacity at constant volume and p [Pa] is the pressure. The
accuracy of these functions was tested, see [2]. These functions are used as the base for the other
functions needed. Following functions are needed for the case of the isentropic compression:

• T (p, s),

• v (p, s),

46



• h (p, s),

• cp (p, s),

• cv (p, s),

• κ (p, s) = cp
cv

,

• r (p, s) = cp − cv,

where r [J.kg−1.K−1] is the specific gas constant and κ [−] is the isentropic coefficient, i.e.,
cp/cv. An iterative numerical approach is used for the calculation of all these variables. The
Newton-Rapson method is used, ideal gas values are used as the initial guess. Ideal gas and real
gas results are compared for the case of isentropic compression both for the single stage (i.e.,
the first compressor stage) and the whole compressor. Basic parameters for both cases are in
Table 1.

Table 1. Compressor parameters

parameter compressor the first stage
input pressure p1 [MPa] 7.5 7.5
input total temperature T1 [K] 333.15 333.15
pressure ratio Π [−] 3 1.246
number of stages 5 1

3. Results
Dependence of real gas parameters on the pressure are presented for the case of the KOBRA
secondary cooling circuit compressor, i.e., the specific gas constant r in Fig. 1, the isentropic
coefficient (ratio of specific heats) κ in Fig. 2, the heat capacity at constant pressure cp in Fig. 3
and the heat capacity at constant volume cv in Fig. 4.

Fig. 1. Specific gas constant r constant on pressure p for the KOBRA compressor

Comparison of the results for the real and ideal gas (r = 287 J.kg−1.K−1, κ = 1.4) are
presented in following tables for the case of the whole compressor (see Table 2) and for the
single stage (see Table 3). Ideal gas values are used as reference for the computation of the
relative error.
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Fig. 2. Isentropic coefficient κ constant on pressure p for the KOBRA compressor

Fig. 3. Specific heat capacity at constant pressure cp constant on pressure p for the KOBRA compressor

Fig. 4. Specific heat capacity at constant volume cv constant on pressure p for the KOBRA compressor
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Table 2. Comparison real vs. ideal gas for the compressor outlet

parameter real gas ideal gas relative error [%]
T2 [K] 459.099 455.995 0.68
v2 [m3.kg−1] 0.0064 0.0058 10.02
∆h [kJ.kg−1] 129.656 123.398 5.07

Table 3. Comparison real vs. ideal gas for the first stage outlet

parameter real gas ideal gas relative error [%]
T2 [K] 355.3521 354.757 0.17
v2 [m3.kg−1] 0.0111 0.0110 1.36
∆h [kJ.kg−1] 21.960 21.704 1.18

4. Conclusions and future Work
The comparison of the ideal and the real gas models based on the work of Baehr and Schwier
[1] is presented for the case of the compressor for the secondary cooling circuit of the KOBRA
project. It is shown that the gas parameters change quite strongly with the pressure for this case.
The results will be used for the improvement of the compressor design and possibly also for the
implementation to the CFD simulation model.
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1. Introduction
The analysis of the flows by computational fluid dynamics becomes useful design and opti-
mization method during recent years. Despite the advances in the computational power but it
could be still very demanding. Therefore empirical models are commonly used as a main tool
for design and prediction of basic performance of axial compressor cascades [1]. The empirical
correlations are derived from experimental data obtained from two-dimensional measurements.
Unfortunately, sufficient amount of data is available only in cases of well-known airfoils as e.g.
NACA 65-series or C.4 profiles. Thus, there is en effort to find a similar relation which will
serve in the same manner for another family of the airfoils.

Classical profiles as NACA 65-series and C.4 circular-arc are suitable in case of low Mach
number corresponding to subsonic flows. Double-circular arc (DCA) and multi-circular arc
(MCA) profiles perform well when the flow is accelerated to high subsonic, transonic even to
low supersonic velocities [1]. Controlled diffusion (CD) airfoils are designed and optimized
specifically for subsonic and transonic cascade applications, thus they can provide better per-
formance than DCA or MCA profiles. The shape construction employs the concept of shaping
the blade beyond the point of peak suction of the surface velocity such that the diffusion rate and
associated suction boundary layer results in minimum loss for the airfoil section [6] resulting in
relatively tight range of acceptable incidence angles [1].

In some complex engineering applications, e.g., nuclear reactor cooling by an axial com-
pressor as a part of the secondary system, it is necessary to ensure reliable operation of the
device when off-design conditions occur. Based on desired pressure distribution on the blade
surface, camber line of the profile together with thickness distribution are established as de-
scribed in [4]. A new airfoil family should outperforms NACA 65-series and it should offer
performance comparable with the CD airfoils. Furthermore, the range of acceptable incidences
should be much wider.

Flow analysis by means of computational fluid dynamics (CFD) could be still very demand-
ing, thus empirical correlations are commonly used as a tool for design and prediction of axial
compressor cascade performance. This contribution aims to searching correlation model for
design points of the new airfoils family in order to accelerate the design of compressor cascade
using artificial neural network (ANN). In contrast to standard deep neural network, the proposed
neural network is built using higher order neural units.
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2. Objective statement
The basic objective of the empirical modelling process is to predict the fluid turning and total
pressure loss for a compressor cascade. From experimental cascade data for NACA 65-series
and C.4 circular-arc blades, Lieblein in [5] developed an empirical correlation for a pressure
loss PL as a function of the equivalent diffusion factor Deq

PL =
ω cos β2

2σ

(
W1

W2

)2

= 0.004
[
1 + 3.1 (Deq − 1)2 + 0.4 (Deq − 1)8

]
, (1)

where

Deq =

(
Wmax

W1

)
W1

W2

=

(
1.12 + 0.61

cos2 β1
σ

(tan β1 − tan β2)

)
W1

W2

. (2)

As it can be seen in equations above, the dependence between total pressure loss, cascade
solidity σ and parameters of the flow is strongly non-linear that is a suitable task for ANN.

3. Methodology
From a mathematical point of view, processing of the information within neuron is consisted
of two separated mathematical operations [2]. The first, synaptic operation contains weights of
the synapse which represents storage of knowledge and thus the memory for previous knowl-
edge. The second is somatic operation which provides various mathematical operations such as
thresholding, non-linear activation, aggregation, etc. Neural output of the unit ỹ is then scalar
as it is indicated in Fig. 1 (left) and expressed by the following equation

ỹ = σ(s). (3)

Let us assume N -th order neural unit, then product of synaptic operation can be written as [3]

s = w0x0 +
n∑

i=1

wixi +
n∑

i=1

n∑

j=i

wijxixj + · · · +
n∑

i1=1

· · ·
n∑

iN=iN−1

wi1i2...inxi1xi2 . . . xin , (4)

where x0 = 1 denotes threshold and n stands for length of input feature vector.
Since desired outputs are known, machine learning is called as supervised learning which

is the task of learning a function that maps input to an output represented with cost function #�e .
As we could see, the neural output is strongly dependent on the neural memories represented by
vector of the weights

#  �

W . Thus, processing of the information should be done in a way which
leads neural unit to be learned. Batch Levenberg-Marquardt algorithm for weights updating [2]
is employed in this work

#  �

W =
#  �

W + ∆
#  �

W , ∆
#  �

W T = −
(

#�

#�

J T
#�

#�

J +
1

µ

#�

#�

I

)−1
#�

#�

J T #�e . (5)

Coefficient µ is learning rate,
#�

#�

I is nw × nw identity matrix, nw number of weights and
#�

#�

J
represents n× nw Jacobian matrix.

Usually, training data set is divided into three subsets. The first, training set which serves
for learning and weights updating. The second is validating set. After each epoch of learning
algorithm, error estimation is performed on this subset in order to avoid neural unit overfitting.
Training continues until validating error is increasing. Third part is called testing set which
measures error after learning is terminated.
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In order to obtain training data set for neural network and replace experimental measure-
ment, various numerical simulations with different geometrical setups and inlet boundary con-
ditions were performed. Design incidence angle was found through number of simulations as
the flow angle with minimum pressure loss as described in [1].

Designed neural network is consisted of two neurons in the first layer and single neuron
in the output layer as it can be seen in Fig. 1 (right). Synaptic operation of all neurons was
assumed as quadratic polynomial in the designed ANN. As the activation function σ(·), bipolar
sigmoid was used in the first layer and linear one in the output layer. Error propagation through
the network is performed using multilayer backpropagation algorithm described in [3].

Neural unit




x1

...
xi

...
xn




Inputs



w1

...
wi

...
wn




Synapse

∑
σ(s)

Soma

w0

Threshold

Learning algorithm

s ỹ ∈ R



x1

...
xi

...
xn




Inputs

NU11

NU12

1st layer

NU21

2nd layer

Fig. 1. Neural network: single neural unit (left); shallow neural network (right)

4. Results
Data set was divided into three aforementioned parts, 80% of samples belongs to training subset
and the rest was equally distributed to validating and testing subsets. Learning rate µ in weight
updating formula (5) was set to µ = 0.4. Referring to Fig. 2 (left), twenty epochs was sufficient
to neural network got learned with testing error 0.0192. Progress of the Lieblein’s correlation
and the function learned by ANN is shown in Fig. 2 (right).

Fig. 2. Results: progress of the learning (left); ANN results compared to Lieblein’s correlation (right)
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Deviations performed by artificial neural network and the Lieblein’s correlation compared
to data obtained by CFD are listed in Table 1, both measured with mean square error (MSE).
Approximation using ANN is more than threefold more accurate that Lieblein’s correlation
model in the whole interval of equivalent diffusion ratio Deq. Although the difference between
discussed methods is smaller, it is shown that total pressure loss modelling using ANN offers
better approximation than Lieblein correlation in the region under diffusion limit (Deq < 2).

Table 1. Mean square error comparison

Interval Whole interval Deq < 2

MSE: Lieblein’s correlation 0.3555 0.1571

MSE: correlation using ANN 0.1096 0.0901

5. Conclusion
An approach for loss correlation was presented in this paper. Based on CFD simulations that
was taken as input data set, artificial neural network was learned to predict total pressure loss at
design point of axial compressor cascade designed with the new family of the airfoils. Results
of the learning are compared against Lieblein’s empirical model [5]. Approximation using ANN
outperformed available correlation model from the literature as it can be seen in Table 1.

Further work should aim to axial compressor cascade performance predicting at off-design
points which will require much larger training data set. Moreover, some geometrical parameters
and parameters of the flow probably should be taken into account as inputs to ANN.
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Vibration suppression takes place in many applications and enviroments. In various cases, for 

example in robotics and industrial enviroment [3], it might be convenient to use absorbers [1] 

to suppress vibrations of the main structure. Based on application, mass-spring absorber is 

attached to main structure in point of interest, tuned and actively driven if needed. In order to 

be able to actively tune and control absorber, some sort of sensors needs to be implemented in 

the main structure or in the absorber itself, such as accelerometers, encoders, geophones, etc. 

Depending on absorbers count and the nature of vibrations, various algorithms can be used to 

drive absorber’s actuators, such as PID regulation, H-inf, LQR [4], Delayed resonator [2], etc. 

Nevertheless, besides mass and stiffness of the absorber, due to many kinds of bearings, usually 

some sort of damping takes place in the absorber. Lots of real cases of beraing damping are far 

from linear and thus burdens control algorithms. In this paper we are experimentally tuning real 

active absorber to be as much undamped (ideal) as possible, so it can be further controlled by 

superior algorithm. 

3-DoF assembly (Fig. 1b) is configured such that active elements lies in mutually 

perpendicular axes, and enables full planar motion (translation in both directions and rotation). 

Each active element (based on assembly MGV52 – Fig. 1a) consists of preloaded springs, linear 

ball bearing, voice-coil actuator and built-in linear encoder. dSpace computer is then used to 

read sensors and control voice-coil actuators through motor driver (Fig. 2a). 

First of all, rough identification must take place in order to get basics characteristics, such 

as precise mass, stiffness of elements and drive coefficients. Since this identification is based 

on measurement data from the control pc, ceratin delay of the loop between output and input of 

the pc (Fig. 2a) is also included among these characteristics. After that it is possible to more 

closely identify the damping function. 

 

  
 

a) active element with linear bearing  b) 3-DoF planar mass-spring configuration   
 

Fig. 1. Absorber design based on MGV52 assembly 
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Since every planar motion of the whole assembly can be transformed into set of linear 

motions of every active element, prev to the 3-DoF tuning, tuning of the single element has 

been performed to get potentionally convinient initial values. Combination of various non-

linear functions with tunable coefficients has proven insufficient for the damping identification 

as well as 1-D look-up table, because results implied the function to be not only the function of 

velocity, but of the displacement as well – since voice-coil has been chosen as an active 

absorber’s actuator for various advantageous reasons, there are more damping sources apart 

from bearings. Firstly, its closed-end design with one millimeter wide gap does not allow air to 

flow effortlessly in and out. Secondly, and more relevantely, electrical characteristic of magnet-

coil coupling greatly depends on the mutual position. Therefore, parametrical 1-D look-up table 

must be at least 2-dimensional. Fig. 2b shows one of more precise idendifications of damping 

as a function of both, displacement and velocity one of the active elements. It consists of more 

or less conventional coulomb-viscous area in low speeds and strokes, as well as of great 

fluctuations (with some sense of symetry) in areas of high strokes. This parametrical plane, 

when put into positive feedback, is then able to reduce relative damping of the absorber and 

retain its stability at the same time. When assembled into the final 3-DoF planar configuration, 

another optimization process takes place in order to adapt initial parameters to increased mass 

(and therefore forces in bearings). This process is centralized in first half and broken apart in 

the second half, in order to save optimization time. 

 
 

a) Control scheme     b) Damping function included in algorithm 
 

Fig. 2. Absorber control algorithm 
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The paper analyses several cable-driven mechanisms (manipulators) whose topology is based 

on the concept of deployable tensegrities. The term tensegrity was coined by shortening the 

phrase tensional integrity and the main feature of these structures is the presence of only 

compression (rods) and tension (cables) loaded members [3]. Deployable tensegrities are then 

a good choice for the creation of a manipulator, because they are divided into individual stages 

that form a tensegrity beam and allow a change of length in the axis of this beam [4]. Examples 

of the analysed structures are shown in Fig. 1. 
 

 
 

Fig. 1. Examples of analysed structure: structures with tensegrity features (left), pure tensegrity (right) 

 

The analysis itself is then based on the definition of tensegrity described in [1], [2]. This 

definition classifies tensegrity structures into two groups based on the following features: 

 T – the structure is truss, 

 S – there is a self-stress state, 

 C – tensile elements (cables) have no rigidity in compression, 

 M – there is an infinitesimal mechanism stiffened by self-stress state, 

 I – the set of struts is contained within the continuous net of tensile elements, 

 D – compressed elements extremities do not touch each other. 
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The structures that have all features (T+S+C+M+I+D) are classified in the “pure tensegrity” 

group. “Structures with tensegrity features” fulfil three obligatory criteria (T+S+C) and have at 

least one of the features: M, I, or D. The main difference between pure tensegrity and structures 

with tensegrity properties is that only pure tensegrity has all the essential engineering properties 

such as the ability to tune the stiffness and natural frequency of structure based on the choice 

of prestress. 

Thus, the key features for determining the group are M and S. Only the presence of self-

stress states (S) is necessary for the possibility of controlling the tensegrity structure. The 

presence of self-stress states and infinitesimal mechanisms in the structure can be verified by 

analyzing the eigenvalues of matrices 𝐵𝐵𝑇 and 𝐵𝑇𝐵, where B is the compatibility matrix. A 

least squares method was used to determine the prestressing of the entire structure, which 

optimizes the distribution of forces by combining the individual self-stress states so that the 

distribution is as close to homogeneous as possible. 

Analysis of the examples shows that the structure on the left in Fig. 1 is a structure with 

tensegrity features and is controllable because it satisfies all features except D (there are 3 self-

stress states and 3 infinitesimal mechanisms). To increase the range of motion, additional cables 

were added (Fig. 2), and in this configuration the structure has 9 self-stress states and no 

infinitesimal mechanisms. However, the use of the least squares method to choose prestress of 

structure determined the distribution of forces in the additional cables to be zero, thus they can 

be described as redundant. 
 

 
 

Fig. 2. Examples of analysed structure with additional cables 

 

The structure on the right in Fig. 1, on the other hand, satisfies all features, i.e., it is a pure 

tensegrity and is controllable. In this configuration it has 1 self-stress state and 13 infinitesimal 

mechanisms. Adding cables (Fig. 2). changes the number of self-stress states to 3 and the 

number of mechanisms to 6. Like the structure with tensegrity properties, the added cables are 

zeroed using the least squares method. The controllability of this structure with the added cables 

is conditioned by the in-plane placement of the nodes between the stages. Thus, if the stages 

interpenetrate each other, the self-stress states are extinguished. 

Based on the analysis, concepts were selected for which a dynamic model was built. The 

models were built using the SimScape environment. This tool allows the direct application of 
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physical blocks and the definition of links between them, thus eliminating the compilation of 

dynamic behavior equations. The final step is then to design and build the demonstrator and 

control application. 
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The paper deals with the principle of eigenmotion, which is based on the idea of keeping the 

total energy constant during the motion of the mechanism. The idea of applying the eigenmotion 

principle is mainly linked to single-purpose mechanisms where there is a requirement to move 

along a periodically repeating trajectory [2]. Therefore, the paper deals with the extension of 

the eigenmotion principle to cable-driven mechanisms which potentially has a larger number 

of members giving the possibility of generating more complex trajectories or easier 

reconfiguration of the manipulator for switching from one eigenmotion trajectory to another. 

The concept of eigenmotion is examined on two basic cable-driven manipulators. The first 

one is an inverse pendulum controlled by two cables (Fig. 1) and the second one is a body in 

planar space controlled by four cables (Fig. 2). Both concepts have two types of additional 

springs – the soft springs which directly connect the moving body and frame and the tension 

springs which prestress the cables and keep the level of prestress at certain level. 

 
 

Fig. 1. A scheme of the inverse pendulum cable-driven manipulator designed for eigenmotion: 𝑘1−2 

– soft springs with damping 𝑐1−2, 𝑘𝜑1−2  – tension torsional springs with damping 𝑐𝜑1−2, 𝐺 – centre 

of gravity, 𝐴 – end-effector, 𝑂 – rotational joint 
 

The eigenmotion trajectory generation is based on the undamped scheme of the dynamic 

model, where repetitive point-to-point trajectories are considered. The dynamic model is 

assembled considering non-rigid cable model with variable stiffness depended on the actual 

cable length 𝑘𝑐𝑎𝑏𝑙𝑒(𝑙𝑐𝑎𝑏𝑙𝑒). The 𝑖-th pulley is modelled as 

𝐼1𝑃𝑖𝜑̈𝑖 = 𝑀𝑐𝑖
− 𝑆𝑐𝑎𝑏𝑙𝑒𝑖𝑟𝑃𝑖 −𝑀𝑘𝜑𝑖

−𝑀𝑐𝜑𝑖
, (1) 
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where 𝐼1𝑃𝑖 is the moment of inertia, 𝑀𝑐𝑖
 is moment generated by the motor, 𝑟𝑃𝑖 is the radius of 

the pulley, 𝑆𝑐𝑎𝑏𝑙𝑒𝑖 is the force in the 𝑖-th cable, 𝑀𝑘𝜑𝑖
= 𝑘𝜑𝑖

(𝜑𝑖 − 𝜑0𝑖
) is the moment generated 

by the torsional spring and 𝑀𝑐𝜑𝑖
= 𝑐𝜑𝑖

(𝜑̇𝑖 − 𝜑̇0𝑖
) is the damping moment. 

The control scheme is based on the computed torque method (CTM), which uses the inverse 

dynamics, and the cable force distribution, which defines the input 𝑀𝑐𝑖
, is solved by the singular 

value decomposition (SVD) [1]. The final values of the control input 𝑀𝑐𝑖
 are optimized so that 

the control inputs 𝑀𝑐𝑖
 are minimized. This approach leads to the minimum energy costs, which 

are needed to stay on the eigenmotion trajectory and overcome the damping, model 

imperfections (parameters in the regulator are chosen a little differently than in the dynamic 

model), disturbances etc. 
 

 
 

Fig. 2. A scheme of the body in planar space designed for eigenmotion: 𝑘1−4 – soft springs with 

damping  𝑐1−4, 𝑘𝜑1−4  – tension torsional springs with damping 𝑐𝜑1−4, 𝐺 – centre of gravity 
 

In conclusion, the brief investigation to the eigenmotion idea of cable driven mechanism 

with absorbing elements is shown. Two planar models are presented and described. The control 

algorithm uses CTM with control inputs 𝑀𝑐𝑖
 using SVD with optimization algorithm which 

keeps the input moments at minimum level as close as possible to the passive prestress in cables 

during the eigenmotion motion. The simulation results show that the control algorithm keeps 

the motion of the mechanism on the chosen eigenmotion trajectory. 

The future work considers the extension to more complex structures and mechanisms where 

additional soft springs can be rearranged so that the eigenmotion trajectory can be more 

complex and reconfigurable. 
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Cable-driven mechanisms are usually a typical example of over-actuated systems, at least when 

the cables are considered rigid. If we include cable compliance, the systems generally become 

under-actuated. Although such a system remains controllable if kept under tension the end-

effector’s acceleration is not directly dependent on the input torques on cable winches which 

means that the inverse dynamics problem is unsolvable. It is usually desirable to make the 

cables as stiff as possible, which allows us to approximate the cables as rigid at each individual 

step of calculating the input torques, invalidating the equations of motion. We can restore 

equality by introducing fictitious cable tension (in the form of internal joint torques) that 

corresponds to the expected deformation. This expected deformation is used to maintain a 

certain degree of pre-tension within the cables and therefore controllability of the entire system.  
 

     
 

Fig. 1. Control of the tensegrity structure along the vertical axis – position in t = 5 s (left) and t = 15 s (right), [1] 
 

The modified equations of motion can be written as  

𝑴𝑑𝒚̈𝑑 +𝑴𝑠𝒚̈𝑠⏟  
𝟎

+ 𝒄 = 𝑾𝒇 + 𝒑 + 𝑨𝑠∆𝒚𝑠 + 𝑩𝒖, (1) 

where 𝒚̈𝒅, 𝒚̈𝒔 are desired and superfluous accelerations, 𝑴𝑑 and 𝑴𝑠 are corresponding mass 

matrices, 𝒄 is the vector of bias terms, 𝒇 is the vector of external forces with wrench Jacobian 
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matrix 𝑾, 𝒑 represents passive joint torques, 𝒖 is the vector of inputs with matrix 𝑩 and finally 

𝑨𝑠∆𝒚𝑠 represents the vector of elasticity torques, where ∆𝒚𝑠 are expected changes in 

deformation. The solution was formulated as a quadratic programming problem [3] with 

maintaining tension within cables as optimizing parameters. 

 

 

     

Fig. 2. Control of the tensegrity structure along the vertical axis – position of the end-effector (left), strain in 

cables (right), [1] 

 

Figs. 1 and 2 show one of the verification experiments, which was the control of the 

tensegrity manipulator [2] along the vertical axis. The cable-pulley interaction is modelled 

using compliant involute joint with internal torque model, accounting for elasticity, damping 

and general uni-directionality of the cable Hermite C1 continuous splines were used as desired 

trajectories. Fig 1 shows the manipulator in two different positions along the trajectory. The left 

part of the Fig. 2 shows that the position of the end-effector corresponds to the desired 

trajectory. The right part shows the strain in the cables during the manoeuvre. 

The described approach can be used, for example, in conjunction with computed torques 

controllers. For this type of control, a precise inverse dynamics model is the key to proper 

functioning. 
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Two-scale numerical simulation of acoustic transmission in
interaction with flow

V. Lukeš, E. Rohan
Faculty of Applied Sciences, University of West Bohemia, Univerzitnı́ 8, 301 00 Plzeň, Czech Republic

Our previously developed two-scale models of the acoustic transmission on perforated plates,
e.g., [1–3] or [4], consider acoustic wave propagation in a stationary acoustic medium. In
this contribution, we present the computational algorithm for solving the extended problem of
acoustic transmission on a rigid perforated plate interacting with an incompressible flow. The
numerical solution consists of two separate problems involving two-scale computations. In
the first problem, the potential flow through the rigid perforated interface is computed and the
results are employed in the second problem, where the homogenized acoustic coefficients are
calculated and the distribution of the global acoustic pressure is found. Both problems require
solving the local (microscopic) subproblems defined in a reference cell Y , which represents the
periodic structure of the perforated interface, and solving the macroscopic subproblems in order
to get the global responses in a macroscopic domain, see Fig. 1.

Fig. 1. Left: original structure. Right: homogenized macroscopic model and reference cell

Homogenization of the potential flow model leads to a set of subproblems defined in Y and
to a macroscopic model of the homogenized layer Γ0, which replaces the original perforated
structure. This homogenized model constitutes the transmission condition coupling the sepa-
rated domains Ω+

δ , Ω−
δ . The solution of the local subproblems in the reference cell Y gives the

so called corrector functions that are used to evaluate homogenized flow coefficients appearing
in the transmission condition. The global macroscopic solution provides the flow velocity field
in the homogenized layer Γ0 and in Ω+

δ , Ω−
δ . The reconstruction based on the corrector func-
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Fig. 2. Computed acoustic pressure in the waveguide and reconstructed pressure fields in two distinct
macroscopic points

tions and the macroscopic solution must be performed to get the flow velocities in Y for given
macroscopic locations, which will be required in the following calculations.

The extended Helmholz equation describing the acoustic waves interacting with an inviscid
fluid is treated similarly to the flow problem above. It again leads to the local subproblems in Y
and the homogenized transmission condition related to the acoustic problem. Because the local
subproblems, and also the homogenized acoustic coefficients, now depend on the flow velocities
that vary in space across the perforations, they must be solved for all given macroscopic points,
usually corresponding to element centers or integration points of the finite element discretization
of Γ0. The space dependent homogenized coefficients enter the macroscopic simulation, which
results in the global acoustic pressure fields in Γ0, Ω+

δ , and Ω−
δ .

Fig. 2 shows the distribution of the macroscopic pressure in the waveguide and the recon-
structed pressures in two distinct perforations. As stated above, the fluid flow influences the
homogenized acoustic coefficients that affect the global acoustic pressure distribution. This is

Fig. 3. Transmission loss curves calculated for different velocities Uin = −Uout = 5, 15, 25 m/s
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illustrated in Fig. 3, where the transmission loss curves are calculated for different inlet and
outlet velocities applied to the waveguide boundaries Γin and Γout, see Fig. 1.
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1. Introduction  

3D printing is a manufacturing technology based on the gradual deposition of material layer 

upon layer. The development of additive manufacturing in recent years has led to the possibility 

of printing not solely pure plastics but also other materials. For example, thermoplastics 

reinforced with long or chopped fibres. Generally, the presence of fibre limits the portfolio of 

applicable 3D printing methods. The most suitable are methods based on the extrusion of 

material (e.g. Fused Filament Fabrication - FFF). In the case of these methods, the nylon with 

chopped fibre passes through the printer nozzle without substantial modifications to the printer. 

The deposition of the long filament into the structure was allowed by the augmentation of the 

FFF printer by adding the second nozzle intended for continuous fibre (Continuous Filament 

Fabrication - CFF). Fibre-reinforced plastic composites printing came on the market a few years 

ago. Therefore, research into the mechanical properties of these materials is currently ongoing. 

In the case of tensile testing, several studies have been published evaluating the results of 

experimental measurements performed on variously shaped specimens. The reason is that there 

are currently no standards focused on mechanical testing methodology for additively 

manufactured composites. In general, the authors used standards ASTM D3039 or ASTM 

D638-14. The former is dedicated to tensile testing of long fibre reinforced composites, and the 

latter specifies tensile testing of pure plastics. Both shapes lead to the creation of stress 

concentrators, which results in premature failure of specimens at inappropriate locations. 

Therefore, the authors proposed a new specimen shape using finite element analysis. The 

primary aim is to verify the specimen shape suitability by the experimental measurements. In 

addition, the comparison of obtained tensile strength with results published in peer-reviewed 

journals by other authors will be performed. 

2. Experiment preparations 

2.1. Manufacturing process 

The production of the specimens was performed using a Markforged MarkTwo printer. This 

printer works on the principles of FFF and CFF methods, which we classify as extrusion 

technologies. The FFF method comprises the following procedures: 

1) The material wound on a spool is fed into the printer head. 

2) The material is heated to a melting temperature. 

3) The molten material is extruded and deposited at precisely specified locations. 

4) Upon deposition, the material cools and solidifies. In addition, deposited material forms 

bonding with adjacent filaments. 
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2.2. Material 

The experimental measurement was carried out on laminates made of polymer reinforced with 

long fibres. The matrix function was fulfilled by nylon reinforced with chopped carbon fibre 

(trademark onyx). The long carbon fibres fulfilled the reinforcement function. 

Table 1. Mechanical properties of  essential materials specified by printer manufacturer 

 Young Modulus [GPa] Tensile strength [MPa] Strain at fracture [%] 

Onyx 1.4 30 58 

Carbon fiber 60 800 1.5 

2.3. Specimens 

The tensile test was realized on the specimens with modified dog bone shapes (Fig. 1). Based 

on the FE analysis published in [6], this shape type appears to be the most suitable for tensile 

testing purposes. The shapes according to standards ASTM D3039 and ASTM D638-14 are 

inappropriate. The reason is the premature breakage caused by the formation of stress 

concentrators. 

 

Fig. 1. Proposed specimen shape 

2.4. Printing parameters 

In the slicing software, the printer user can modify some parameters. Table 2 gives an overview 

of the print settings applied in this study. 

Table 2. Printing parameters 

Parameter Value 

Lamina thickness [mm] 0.125 

Base plane XY 

Orientation of matrix filaments [degrees] 45/-45 

Infill density [%] 100 

Infill pattern Solid infill 

Number of roof and floor layers 

Total number of laminas 

4 

14 

Reinforcement type Carbon 

Reinforcement orientation Unidirectional (0°) 

Number of reinforced layers 6 

The infill pattern was solid with 100% density and 45/-45 orientation. Also, the number of 

walls and roof/floor layers was 2 and 4, respectively. A previous study focused on nylon with 

chopped carbon fibres showed that all these parameters affect the strength of the laminates [8]. 
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In the case of laminates reinforced with continuous fibre, there is no expectation of a significant 

effect of the matrix on the strength of the specimens since the strength of the fibres significantly 

exceeds the matrix strength. 

 

3. Results 

The results of the tensile test of the continuous fibre-reinforced thermoplastic composites 

performed using INSTRON 5985 are shown in Table 3. 

Table 3. Tensile test results 

Fibre type Fibre orientation Number of rings Maximum force [N] Ultimate strength [MPa] 

Carbon 0° 0 8311.2 318.42 

Subsequently, it was necessary to perform the comparison of the achieved tensile strength 

with results published by other research institutes. The comparison is in tabular form (Table 4) 

and also plotted using program Matlab (Fig. 2). The fibre volume fracture (FVF) was 

determined as the ratio between the number of reinforcing layers to the total number of laminas 

in the narrowest part of the specimens. 

Table 4. Overview of the results of carbon fibre reinforced thermoplastic composite specimens published 

in scientific journals 

Authors Specimen shape FVF [%] Ultimate strength [MPa] Fiber deposition 

Majko custom 42 318.42 0 

Goh [5] 638-14 92 600 0 

Lozada [9] 638-14 69 304.3 concentric 

Al-Abadi [1] 3039 50 320 concentric 

Dickson [3] 3039 30.7 216 concentric 

Ghebretinse [4] 3039 71 560 0 

Chacon [2] 3039 

6.25 96.6 

0 50 239.8 

87.5 436.7 

Iragi [7] 3039 88.8 779 0 

 

Fig. 2. Plot of results comparison 
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The specimen proposed by the authors achieved a tensile strength of 318.42 MPa at FVF of 

42%. Comparable results obtained only specimens with shape according to ASTM D3039 in a 

study published by Al-Abadi et al. [1]. The tensile strength was 320 MPa at 50% FVF. Chacon 

et al. [2] realized the tensile test on identical specimens and achieved significantly lower tensile 

strength. The difference could lie in various fibre deposition arrangements. According to the 

results, the fibres deposited in rings around specimen circumference lead to higher tensile 

strength than unidirectionally deposited fibres. 

For the ASTM D638-14 specimens, even a significantly higher FVF did not lead to tensile 

strength higher than 300 MPa.  

4. Conclusion 

The assessment of the results confirmed the suitability of the proposed shape for tensile testing 

of additively manufactured composite specimens. Therefore, in the future, the authors will 

follow up these results with further measurements to determine: 

 the effect of FVF on the tensile strength, 

 the influence of the reinforcement type and its arrangement on the tensile strength. 
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The laboratory of service strength and fatigue life testing of the Regional Technological 

Institute has been cooperating with bus and trolleybus manufacturers SOR and SOALRIS for a 

long time. In order to assess the service life of city buses and trolleybuses, there is very often 

an insufficient amount of information from service loads available. One of the options for 

proceeding in such a case is to use so-called design load spectra. The paper aims to use a case 

study to calculation of the service life of a specific welded node using the service spectrum, 

which was evaluated for an empty and full car based on strain gauge measurements in urban 

traffic. Last but not least, the evaluation of thin-walled welded structures will also be discussed, 

especially with regard to the applied stress, as it is often problematic to place the strain gauge 

in such a way as to determine the commonly used nominal or hot-spot structural stress. 

 

Fig. 1. CAD model of bus bodywork (left), CAD detail for testing (right) 

   

Fig. 2. S-N curve of bodywork detail (left), labor test (right) 
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The methodology will be demonstrated on the welded L profile, which is located in the rear 

part of the body. This welded detail has been tested in the laboratory, the test results are 

modified but realistic, the test was controlled by force and the failure criterion was the formation 

of a microcrack. The deformation was measured using strain gauges. Its values were used to 

transform force into stress. 

The stress was measured on the real track, with the strain gauges placed in the same place 

during the ride and as during the test in the laboratory. Variable amplitude loading from real 

service representing approximately 13 km long track is shown below.  

 

Fig. 3. The strain gauge signal, strain gauge on the bus 

Software nCode and the fatigue damage accumulation hypothesis was used to calculate the 

service life. The methodology used for the calculation was described by authors mode deeply 

previously in [1]. 

 

Fig. 4. nCode program results 
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1. Introduction 

The most well-known theories of warping torsion beams with constant stiffness, (TTT), were 

elaborated by Vlasov [6], and Benscoter [1]. As is known, their difference lies in the 

determination of a new unknown quantity, which characterizes the axial deformation of the 

cross-section caused by its twisting . For Vlasov, this quantity is the relative torsion 

angle , which is a dependent quantity. In this case, , This 

dependence, considered as a lack of this theory, was addressed by Benscoter by introducing 

an independent function : . The warping ordinate function 

depends only on the cross-sectional geometry of the beam. Significant contribution to 

the theory of warping torsion of thin-walled beams of constant stiffness are articles published 

by Rubin, e.g. [5], where the analogy between the II. order bending theory of beams and the 

warping torsion was used. The calculation of maximum normal and shear stresses is 

performed using known formulas based on TTT. However, the above procedures may not be 

used for FGM beams with spatial variability of material properties, because not only the 

primary quantities but also the normal and shear stresses and warping ordinates function 

depend on the variability. This dependence influences maximum stresses not only in their size 

but also in their place of action [2-4]. In proposed contribution, the new kinematic and 

constitutive equations for calculation of warping torsion deformation and stresses in the FGM 

beams with spatial variability of material properties will be formulated. These equations will 

include both the effects of material properties variability and the material-dependent warping 

ordinate function and its gradients. These equations can be used for warping torsion analysis 

of FGM beams with both open and closed cross sections. The significant influence of spatial 

variability of material properties on normal and shear stresses by warping torsion will be 

documented by numerical simulations of FGM thin-walled beams. 

2. Kinematic and constitutive equations in warping torsion of FGM beams 

Kinematics of a warping free cross-section of FGM beam with spatially varying material 

properties is shown in Fig. 1. In the cross-section, following quantities have to be known: the 

bimoment , the primary  and secondary  torsion moments, the relative 

twist angle , the part of the bicurvature  caused by the bimoment, the effective 

bimoment stiffness  and the primary tosional stiffness  and the effective 
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secondary stiffness . Further,  is the spatial distribution of the elasticity 

modulus and  is the spatial distribution of the shear modulus in the real FGM beam. 
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Fig. 1. Kinematics of arbitrary point in the warping free cross-section 

After expressing the components of the displacement vector of the selected cross-section, the 

components of the normal stresses, 𝜎(𝑥, 𝑦, 𝑧), and the shear stresses, 𝜏(𝑥, 𝑦, 𝑧), using Hooke's 

law, we get the resulting relations for their calculation of normal and shear stresses: 

,     (1) 

,                      (2) 

.            (3) 

The warping ordinate function is denoted by 𝜔(𝑥, 𝑦, 𝑧). The displacements of the point 

𝑃(𝑥, 𝑦. 𝑧) are: 

   and           , 

from which the normal and shear strains can be obtained. Finally, by use of the Hooke's law 

the expressions for the normal and shear stresses (1-3) have been established. 

3. Conclusions 

In the author's contribution, by using the proposed warping torsion FGM WT beam finite 

element [3, 4], the results from the non-uniform torsional analysis of thin-walled cross-section 

FGM beams with spatially varying material properties are presented. These results agree very 

well with the ones obtained by a very fine mesh of the 3D solid FE. New equations for 

calculation of the normal and shear stresses caused by warping torsion of the FGM beams 

with spatially varying stiffness are presented. The deformation effect of the secondary torsion 

moment and the part of the bicurvature caused by the bimoment is accounted. The warping 

ordinates function and its gradients, which may depend on the spatially varying material 

properties, are established and implemented in the calculation of normal and shear stresses. 

Results of numerical experiments and their verification by very fine mesh of the solid finite 
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elements will be presented in the conference presentation It is originally shown that a strong 

continuous change in material properties causes significant bimoment normal stresses not 

only at clamped cross-section but also in the field of the beam, and also in the internal points 

of the cross-section. The variability of material properties in the cross-section of a twisted 

beam can cause the rise of the maximum stresses at other points of the cross-section than is 

assumed by the classical theory of warping torsion of thin-walled shafts. For this reason, its 

use in such cases is inappropriate. Proposed warping torsion beam finite element is very 

effective - the FGM beam with a longitudinal polynomial variation of the effective material 

properties can be modelled with only one FGM WT beam finite element. The presented 

equations (1-3) allow calculation of the normal and shear stress at any point of the cross-

section of the beam loaded by warping torsion. 
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On the development of Cahn-Hilliard Navier-Stokes
numerical solver within OpenFOAM framework

J. Musil
Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo nám. 13, 121 35 Praha, Czech Republic

1. Introduction
One of the most common approach used in engineering applications dealing with two-phase
fluid flows is Volume-of-Fluid (VoF) method. The VoF method consists of the Navier-Stokes
equations equipped with transport equation for phase interface capturing indicator function.
Although the VoF method experienced considerable improvements of numerical algorithms
over the years, still it relies on artificially introduced features like interface compression term
or algorithmically complex geometric interface reconstruction numerical schemes.

An alternative, less common approach refers to diffuse interface models, often labeled as
Cahn-Hilliard models. Those models track the interface of two phases using a smooth phase-
field function allowing a diffuse transition between the physical properties from one phase to
the other and circumvents modeling the jump discontinuities at the interface. The Cahn-Hilliard
equations exhibit many advantages, including mass conservation, thermodynamic consistency,
and a free-energy based description of surface tension with a well-established theory from non-
equilibrium thermodynamics.

Moreover, Cahn-Hilliard model combined with Navier-Stokes equations can be in fact re-
garded as a VoF model augmented by non-linear, fourth-order diffusive term which naturally
incorporates surface tension and possibly allows under-resolving of flow field in regions of less
importance, thus reduction of computational time. On the other hand, the system of equations is
even more strongly coupled which pose challenging issue to design efficient, provably energy-
stable and ideally decoupled numerical algorithms.

The contribution presents Cahn-Hilliard Navier-Stokes (CHNS) solver being developed
within the OpenFOAM framework [4]. The aim of this endeavor is to provide efficient and ro-
bust solver of two-phase fluid flows integrated in popular OpenFOAM package already equipped
with adaptive-mesh-refinemet and parallelization tools. The attention is paid to the description
of two possible versions of numerical algorithms utilizing block-coupling framework intro-
duced in OpenFOAM-extend. The performance of new solvers is compared with OpenFOAM
native VoF solver on a simple test case. Some possible phase-field model adjustments and
modifications are outlined and future development directions are discussed.

2. Mathematical models
The VoF model is described as follows. It consists of Eq. (1)–(3), where 0 ≤ α ≤ 1 is the
indicator function (liquid fraction in the mixture) and the property of the mixture is calculated
as χ = αχ1 +(1−α)χ2 with χ here being substituted density ρ and dynamic viscosity η and χ1,
χ2 representing values of unmixed phases. The deviatoric stress tensor τ = η(α)[∇u+(∇u)T ]
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expresses tangential stresses, g is the acceleration due to gravity, σ is the surface tension and
κ = −∇ · (∇α/|∇α|) is the surface curvature. The dynamic pressure and volume-averaged
velocity of the mixture are denoted by pd and u, respectively.

∂t(ρu) + ∇ · (ρu⊗ u) + ∇pd −∇ · τ + (g · x)∇ρ− σκ∇α = 0, (1)
∇ · u = 0, (2)
∂tα + ∇ · (αu) = 0. (3)

The second considered model, the phase-field formulation, is represented by the system of
Cahn-Hilliard Navier-Stokes equations which reads (for detailed derivation of the model, see
e.g. [1])

∂t(ρu) + ∇ · (ρu⊗ u) +∇ · (u⊗ J) + ∇pd −∇ · τ + (g · x)∇ρ+ ϕ∇µ = 0, (4)

J =
ρ2 − ρ1

2
M(ϕ)∇µ, (5)

∇ · u = 0, (6)
∂tϕ+ ∇ · (ϕu)−∇ · (M(ϕ)∇µ) = 0, (7)

µ =
σ

ε
F ′(ϕ)− σε∆ϕ

F (ϕ) =
1

4
(ϕ2 − 1)2




−→ µ =

σ

ε
(ϕ3 − ϕ)− σε∆ϕ. (8)

Here −1 ≤ ϕ ≤ 1 is the phase-field function and the density of the mixture is calculated as
ρ = ρ1−ρ2

2
ϕ+ ρ1+ρ2

2
. The dynamic viscosity is calculated similarly. The deviatoric stress tensor,

dynamic pressure and volume-averaged velocity of the mixture are τ , pd and u, respectively.
The J represents mass diffusion due to the concentration differences at the phase interface, µ
is chemical potential function, F (ϕ) is the bulk free energy potential function, σ is the surface
tension, ε is parameter proportional to the interface thickness, M(ϕ) is the mobility parameter.

3. Numerical algorithms
3.1 interFoam

As the reference for newly developing phase-field based algorithm, the OpenFOAM solver
interFoam based on VoF model is chosen. The solver relies on a pressure-velocity coupling
PISO algorithm when solving Eq. (2)–(3) in addition with solving the Eq. (1) which is achieved
by means of the MULES explicit solver based on the FCT technique. The detailed description
can be found in e.g. [3].

3.2 chnsCoupledFiMuFoam

In the first variant of presented phase-field algorithm Eq. (9)–(10) are substituted in the Eq. (3)
in the original interFoam solver. The Eq. (9)–(10) are solved by means of block-matrix coupling
framework available in foam-extend fork. The variables in [·]n+1 are solved implicitly, while
the ones in (·)n+1 are updated by iterative loop. Then PISO algorithm for updating pressure and
velocity follows.

[ϕ]n+1 − ϕn
δt

+ ∇ · ([ϕ]n+1un)−∇ · (M(ϕn+1)∇[µ]n+1) = 0, (9)

[µ]n+1 =
σ

ε

(
(ϕn+1)2 − 1

)
[ϕ]n+1 − σε∆[ϕ]n+1. (10)
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3.3 chnsCoupledFiMuPdFoam

The second variant of the phase field algorithm uses slightly modified pressure-velocity decou-
pled approach proposed in [2]. The system of Eq. (11)–(14) is solved by block-matrix coupling
till congvergence is reached. Then, with use of updated mass flux of Eq. (15) the momentum
equation (16) is solved only once.

[ϕ]n+1 − ϕn
δt

+ ∇ · ([ϕ]n+1u∗)−∇ · (M(ϕn+1)∇[µ]n+1) = 0, (11)

u∗ =
ρnun

ρn+1
− δt

ρn+1

(
ϕn+1∇[µ]n+1 + ∇[pd]

n+1 + (g · x)∇[ϕ]n+1
)
, (12)

∇ · u∗ = 0, (13)

[µ]n+1 =
σ

ε
((ϕn+1)2 − 1)[ϕ]n+1 − σε∆[ϕ]n+1, (14)

Jn+1 =
ρ2 − ρ1

2
M(ϕn+1)∇µn+1, (15)

ρn+1[u]n+1 − ρn+1u∗
δt

+ ∇ · (ρn+1u∗ ⊗ [u]n+1) + ∇ · (u∗ ⊗ Jn+1)−∇ · [τ ]n+1 = 0. (16)

4. Numerical results
Both two above mentioned versions of CHNS algorithms were tested on the simple 2D case of
two collapsing water droplets. The computational domain is a square Ω = [0, 0.1]2. The droplets
of radii r = 0.01 m are each distanced from the domain center horizontally by 0.025 m. The
droplets are collapsed together by opposite horizontal velocities of magnitude |u| = 0.05 m/s.
The boundary conditions were set as: u = 0, ∇pd · n = 0, ∇ϕ · n = 0, ∇µ · n = 0. The
parameters in the model are chosen as ρ1 = 1 kg/m3, ρ2 = 103 kg/m3, η1 = 10−3 Pa·s, η2 =
1.8×10−5 Pa·s. The surface tension is set as σ = 0.07 kg/s2 and interface thickness ε = 10−3 m.
The mobility parameter was considered constant: M(ϕ) = M = 10−6 kg−1m3s−1. The gravity
was not taken into account and the fluid flow was considered laminar. As a reference, the case
was also computed with interFoam solver with the same corresponding physical parameters and
boundary conditions (∇α · n = 0).

Fig. 1. Time evolution of collapsing droplets. The detail of (0.06 × 0.06) m centered square
region of the original domain shows the contours of ρ = 500 kg/m3 (phase interface) for the
solutions obtained by: • interFoam , • chnsCoupledFiMuFoam, • chnsCoupledFiMuPdFoam

In Fig. 1, one can see amplifying difference in the oscillating droplet shapes during the time.
It has been found out that values of the mobility parameter M and the length parameter ε can
have strong influence on the stability and speed of computations as well as the dynamics of the
system.
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Fig. 2. Energy dissipation curves

In Fig. 2, there are plotted graphs of
the relative total energy Er(t) = E(t)/E(0),
where E(t) being sum of total kinetic energy,
gravitational potential energy and total free
energy. The graphs suggest that chnsCou-
pledFiMuPdFoam performs better in the
energy dissipation rate than chnsCoupled-
FiMuFoam while interFoam exhibits large
oscillations in the total energy. This is proba-
bly caused by incompletely defined total free
energy used for VoF formulation:

FCHNS =

∫

Ω

(σ
ε
F (ϕ) + 1

2
σε|∇ϕ|2

)
dx vs. FV oF =

∫

Ω

(
1
2
σε|∇α|2

)
dx (17)

From the point of CPU efficiency, the best results were obtained by interFoam, up to 2 times
faster than phase-field codes. But on the other hand the presented phase-field codes are sensitive
to solver setting and need to be further examined and adjusted. The error of mass conservation
was within 1% at the phase-field models, while at interFoam almost down to computer pre-
cision. The poor mass conservation of phase-field model can be caused by possibly ill posed
boundary conditions.

5. Discussion
During the phase-field algorithm testing procedure it turned out that further investigation of
the solver parameters setting playing crucial role in computational efficiency is needed. Future
work will be focused on design of variable mobility parameter, based on grid resolution handled
by adaptive-mesh-refinement and/or under-resolving flow conditions in order to fully utilize and
improve the promising features of phase-field model which have not been met quite met at this
stage. Other variants of coupled/segregated procedures will be considered with the aim to prove
energy stability of such algorithms.
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The numerical analysis of cantilever beam structures 

filled using aluminium foam 

M. Naď, L. Rolník, P. Bucha 

Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, 

Ul. Jána Bottu 25, 917 24 Trnava, Slovak Republic 

The design trends in the field of civil engineering, mechanical engineering, but especially the 

automotive industry increasingly apply thin-walled structural components filled with foam 

structures mainly due to relatively low weight, possibility of achievement of the required 

stiffness, and also their excellent ability to absorb energy. Structural components have different 

shapes and are subject to different loads depending on their shape. 

The beam constructions are generally classified as the most used and the most important 

constructions in the field of mechanical engineering. For these reasons, the specific beam 

structures with improved properties in terms of weight, stiffness and damping are currently 

being developed, which will also meet economic requirements. One of the design approaches 

that could meet the mentioned requirements is the creation of a beam structure with a closed 

cross-section, while its inner space is filled with a material with a specific structure created as 

aluminium foam. 

The Al-foam and its material properties depend on the conditions and parameters of 

technological process. The global as well as the microstructural material properties of 

aluminium foam depend on the conditions and parameters of the technological process by 

which the creation of aluminium foam is achieved. From a global point of view, the properties 

as mass and stiffness of aluminium foam, which are crucial for the design of constructions from 

components filled using aluminium foam, are dominantly dependent on the size and distribution 

of cavities in structure of aluminium foam. On the basis of knowledge, it can be concluded that 

when using existing technological procedures, it is not possible to achieve either the same size 

of cavities or a deterministically arranged distribution of cavities in the volume of aluminium 

foam. However, this fact significantly complicates the possibilities for creating computational 

models and performing numerical simulations on virtual models of structures made of 

components with an aluminium foam structure. In principle, it is not possible to practically 

carry out computational simulations with the fact that the computational models of the foam 

structure would contain cavities created in detail in the volume of aluminium foam [1], [2]. This 

is due to the stochastic nature of the shape and also the distribution of cavities, but mainly due 

to the size of the computational model of the given structure. One of the possibilities to 

overcome these complications is the homogenization of the properties of the foam structure [3], 

i.e. determine the necessary equivalent mechanical properties of the homogenized volume 

without cavities, which replace the volume of the foam structure with cavities. The method of 

determining the equivalent mechanical properties of the homogenized aluminum foam structure 

is presented in the article. Due to the stochasticity of the aluminum foam structure (Fig. 1), the 

homogenization of these mechanical properties will be performed for the deterministic 

structural arrangement of the cavities. The basis for performing the homogenization of 

mechanical properties is the assumption of elastic behavior of aluminum foam. 
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a b 

Fig. 1. Aluminium foam; a - structure of aluminium foam; b - profile filled using aluminum foam 

The homogenization of the mechanical properties of the foam structure with a deterministic 

distribution of cavities and with a specified dimension of the cavities is based on the creation 

of a basic cell with a cavity inside the cell (Fig. 2). By using these cells representing part of the 

foam structure, the internal space of the beam structure is filled. 

The mutual dimensional parameters of the cell and the cavity are specified, considering 

what part of the cell volume is occupied by the cavity, which is expressed by the ratio  of the 

dimensions of the cell and the cavity 

 
1

1

1

1

a

r

a

d

c

 , (1) 

where d1 is cavity diameter and ac1 is length of the cell edge (cube shape). 

 

  
a b 

Fig. 2. Computational models for homogenization of mechanical properties; a- fundamental geometry of cell 

with cavity; b-structural model of deterministic foam structure 

The basic mechanical properties that need to be determined for the homogenized structure 

are Young modulus and Poisson's number. It is obvious that the homogenized mechanical 

properties of porous structures (Fig. 2b), which are created using deterministically arranged 

cells with a cavity (Fig. 2a), are dependent on the ratio  and the number of cells in the porous 

structure. Therefore, computational models porous structure with the same global geometric 

dimensions and with different numbers of cells with cavities were created (Table 1).  

Table 1. Models of porous structures 

Type of structure 
T1 T2 T3 
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Uniaxial loading was applied to these porous sample models. Subsequently, a change in 

the global dimensions of the porous sample, i.e. elongation in the load direction and contraction 

perpendicular to the load direction. The calculation of the homogenized mechanical properties 

of porous structures is performed using well-known standard expressions from the theory of 

elasticity, so they can be expressed in the following form 

- homogenized Young modulus 
px

h
S

F
E

,

1


 , (2) 

- homogenized Poisson´s number 
px

pz

px

py
h

,

,

,

,









 , (3) 

where F - loading force, 

 S - surface on which the loading force acts, 

 Lx - length of the porous sample in the x-axis direction, 

 Lx,p - elongation of the porous sample in the x-axis direction, 

 ipipi LL ,,   - strain of the porous sample in the „i” axis direction (i  x, y, z). 

The dependences of the homogenized Young modulus Eh and the homogenized Poisson's 

number h of aluminium on volume ratio V  for different types of cavities arrangement are 

shown on Fig. 4 and Fig. 5.  

  
Fig. 3. Dependence of the homogenized Young modulus Eh of aluminum on the volume ratio V

for different types of cavity arrangement 

 
Fig. 4. Dependence of the homogenized Young modulus Eh of aluminum on the volume ratio V

for different types of cavity arrangement 
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To investigate the effect of the cavities size on the mechanical properties, the coefficient 

V is defined, which represents the ratio of cavities volume Vc to the full material volume Vfull 

 
full

c
V

V

V
 . (4) 

Comparison of the deformations of the cantilever beam structure filled with aluminum foam 

(porous material), which in the first case was modeled as a porous structure with 

deterministically arranged cavities and in the second case the beam filling was modeled from a 

non-porous material with homogenized mechanical properties, are shown in Fig. 5. 

  

  
a b 

Fig. 5. Deflection of cantilever beam filled aluminium foam; a-porous model; b-homogenized model 

Based on the obtained results, it can be concluded that a good agreement was obtained for 

the bending of the beam filled with aluminum foam, which was modeled in the first case as a 

porous material and in the second case as a model with homogenized mechanical properties. 

The above-mentioned methodology for modeling mechanical structures filled with porous 

material by homogenizing the filling and replacing it with homogenized mechanical properties 

provides, in addition to good agreement of results, a significant reduction in the size of the 

simulation models and the resulting reduction in calculation times. 

Acknowledgements 

The work has been supported by the research project KEGA 009STU-4/2021. 

References 

[1] Bırsan, M., Sadowski, T., Marsavina, L., Linul, E., Pietras, D., Mechanical behavior of sandwich composite 

beams made of foams and functionally graded materials, Journal of Solids and Structures 50 (2013) 

519–530. 

[2] Harte, A.M., Fleck, N.A, Ashby, M.F., Sandwich panel design using aluminum alloy foam, Advanced 

Engineering Materials 2 (4) (2000) 2019-2022. 

[3] Zarei, H.R., Kröger, M., Bending behavior of empty and foam-filled beams: Structural optimization, 

International Journal of Impact Engineering 35 (2008) 521–529. 

82



Analysis of van der Pol equation on slow time scale
for combined random and harmonic excitation

J. Náprstek, C. Fischer
Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 76, 190 00 Prague, Czech Republic

1. Introduction
Vortex shedding represents one of the most important processes that constantly attract the at-
tention of experimental and theoretical research. A number of non-linear effects arise from
the fluid-structure interaction. The non-stationary response in the vicinity of the lock-in region
has a quasi-periodic character, beating frequency of which varies considerably with the dis-
tance from the lock-in frequency. This property is significantly affected by the assumption of
combined random and harmonic excitation. This paper describes several details that contribute
to the probabilistic characteristics of the system on a time-slow scale using partial response
amplitudes.

2. Mathematical model
\

6

9
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[

�

3 �Z
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Fig. 1. SDOF system outline

The problem is defined by a strongly nonlinear
SDOF oscillator with additive excitation com-
bining deterministic and random components,
see Fig. 1.

The nonlinear response properties can be
captured by means of the van der Pol equation.
The assumed configuration makes the trivial so-
lution unstable and the limit cycle stable. Thus
it can represent the beating effects and stabiliza-
tion due to a stable limit cycle. The correspond-
ing Stochastic Differential Equation (SDE) can
be written in the normal form

u̇ = v,

v̇ = (η − νu2)v − ω2
0u+Pω2 cosωt+ hξ(t),

(1)

where
u, v − the displacement, [m], and velocity, [m s−1];
η, ν − parameters of the damping, [s−1], [s−1m−2];
ω0, ω − the eigen-frequency of the linear SDOF system and frequency of the vortex shedding,

[s−1];
Pω2, ξ(t) − the amplitude of the harmonic excitation force, [ms−2], and the broadband Gaus-

sian random process, [1];
h − the multiplicative constant, [m s−2].
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3. Slow-time system
In order to apply the stochastic averaging method [1, 3], displacement and velocity u(t), v(t)
can be written in the form of the first harmonic approximate

u(t) = ac cosωt+ as sinωt , v(t) = −acω sinωt+ asω cosωt (2)

together with an auxiliary condition, which reflects the fact that an additional variable was
introduced

ȧc cosωt+ ȧs sinωt = 0 . (3)

Such an approximation leads to an SDE system for amplitudes ac(τ), as(τ) slowly variable
in time

ȧc =
ω2
0 − ω2

ω
sinωt(ac cosωt+ as sinωt) − Pω sinωt cosωt− h

ω
sinωt · ξ(t)

− sinωt[η − ν(ac cosωt+ as sinωt)2](−ac sinωt+ as cosωt),
(4a)

ȧs = − ω2
0 − ω2

ω
cosωt(ac cosωt+ as sinωt) + Pω cos2 ωt+

h

ω
cosωt · ξ(t)

+ cosωt[η − ν(ac cosωt+ as sinωt)2](−ac sinωt+ as cosωt) ,
(4b)

which gives rise to the Itô averaged system

dac =
π

ω

[
ηac + 2∆as −

1

4
ν · ac(a2c + a2s)

]
dt+

( π
ω2

Φξξ(ω)
)1/2

dBc(t), (5a)

das =
π

ω

[
−2∆ac + ηas −

1

4
ν · as(a2c + a2s)

]
dt+

π

ω
Pω dt+

( π
ω2

Φξξ(ω)
)1/2

dBc(t), (5b)

where Bc(t) is the Wiener process related with input excitation ξ(t).
The closed form solution to Eq. (5) is available for vanishing detuning, ∆ = 0, see [2].

4. Fokker-Planck equation
The reduced FPE for the stationary cross PDF p(ac, as) (left side of the FPE is put to zero) can
be written in the form

∂

∂ac

([
ηac + ∆as −

1

4
ν · ac(a2c + a2s)

]
p

)
− 1

2ω2
Φξξ(ω)

∂2p

∂a2c

+
∂

∂as

([
− ∆ac + ηas −

1

4
ν · as(a2c + a2s) + Pω

]
p

)
− 1

2ω2
Φξξ(ω)

∂2p

∂a2s
= 0

(6)

with zero boundary conditions at the infinity. The unknown PDF is assumed to have the form

p(ac, as) = p0(ac, as)

M,k∑

k,l=0

qkl · ak−lc · als . (7)

In this expression, p0(ac, as) represents the weight function and is selected in the form of the
FPE solution for zero detuning, see [2],

p0(ac, as) = C · exp

(
η

2S

[(
as +

Pω

η

)2

+ a2c −
ν

8η

(
a2c + a2s

)2
])

. (8)
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The normalizing factor C is to be determined numerically for a particular setting of parameters,
it can be considered C = 1. The powers of ac, as are assembled to form stochastic moments of
k-th order sequentially up to the M -th level; they function as correction terms.

In order to deretmine coefficients qk,l using the Galerkin-Petrov orthogonalization, the ap-
proximate solution Eq. (7) is introduced into the FPE, Eq. (6), multiplied by the factor ϕrs =
ar−sc · ass and integrated in the whole plane R

∞∫∫

−∞

ar−sc ass
∂

∂ac

((
ηac + ∆as −

1

4
νac(a

2
c + a2s)

)
p0(ac, as)

M,k∑

k,l=0

qkla
k−l
c als

)
dacdas

+

∞∫∫

−∞

ar−sc ass
∂

∂as

((
−∆ac + ηas −

1

4
νas(a

2
c + a2s) + Pω

)
p0(ac, as)

M,k∑

k,l=0

qkla
k−l
c als

)
dacdas

−
∞∫∫

−∞

ar−sc assS

[
∂2

∂a2c
+

∂2

∂a2s

](
p0(ac, as)

M,k∑

k,l=0

qkla
k−l
c als

)
dacdas = 0, S =

1

2ω2
Φξξ(ω) .

(9)

Here, M is the upper limit of stochastic moments we want to include into the analysis.
Several steps of the per-partes procedure and usage of homogeneous boundary conditions

and particular forms of the po(ac, as) partial derivatives lead to a formula, which is applicable
for the combined analytical-numerical integration

0 =

∞∫∫

−∞

{
[
a%−2c as−2s

(
%(%−1)a2s − s(s−1)a2c

)
S + ∆acas

(
%a2s−sa2c

)] M,k∑

k,l=0

qkla
k−l
c als

− S

[
s

d

das

(
a%ca

s−1
s

M,k∑

k,l=0

qkla
k−l
c als

)
−% d

dac

(
a%−1c ass

M,k∑

k,l=0

qkla
k−l
c als

)]}
p0(ac, as)dacdas ,

s = 0, .., r , r = 0, ..,M , % = (r − s) .

(10)

Further simplification of the expression (10) follows from the symmetry of the problem, so that
the terms involving even powers of ac vanish during integration. Eq. (10) represents a linear
homogeneous algebraic system for 1/2 · (M + 1)(M + 2) unknown coefficients qkl, k, l =
0, ..,M ; k + l ≤M .

Eq. (10) degenerates for s = 0, r = 0. This missing condition can be replaced by Eq. (7),
where setting M = 0 implies q00 = 1. This is equivalent to the condition of normalization of
the resulting PDF.

Performance of the proposed procedure is shown in Fig. 2. Both partial amplitudes ac, as
are shown for six values M = 0, . . . , 5. In each plot, the estimated PDF p(ac, as) is shown on
the left and the value of the correction Galerkin term on the right. It can be seen that the value
of the correction term within the selected domain of (ac, as) increases for increasing M from
approx. ±5% to approx. ±10% for M = 5.

5. Conclusions
The proposed procedure for estimation of PDF based on the partial amplitudes was shown on the
example of the van der Pol equation, which was used for description of the vibrational effects
based on the flow-structure interaction and vortex shedding. Sinmilar procedure is applicable
to a variety of similar problems, namely those connected to traffic induced almost-resonant
vibrations, identification problems and other system which work in a regime close to resonance.
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Fig. 2. Values of probability density function Eq. (7) for increasing value of M . Each pair of plots shows
the Galerkin solution p(ac, as) on the left and the correction term value

∑M,k
k,l=0 qkla

k−l
c als on the right.

Values used: ∆ = 0.05, η = 1.6, ν = 1, P = 1, S = 4

The approach based on the partial amplitudes, however, is based on a knowledge of the
stationary solution of the corresponding FPE. For a really general approach, the dependence on
the original time coordinate must be respected. For this purpose, the correction terms used for
the Galerkin approximation has to encompass the time dependency. This topic is going to be
further elaborated in the future.
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Construction of the Lyapunov function reflecting
the physical properties of the model

J. Náprstek, C. Fischer
Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Prosecká 76, 190 00 Prague, Czech Republic

1. Introduction
Practical experience shows that the random excitation component can affect the system response
and its dynamic stability not only negatively but also positively. For example, the presence
of a certain artificially generated turbulence component can have a positive effect against the
occurrence of resonance. Such mechanisms are usually developed heuristically and are often
not sufficiently justified theoretically. On the other hand, the presence of random excitation can
lead to dangerous interactions with deterministic processes and thus cause a reduction in the
level of dynamic stability in conditions that do not seem serious at first sight (icing on cables or
power lines, road roughness, etc.).

In the sense presented by Bolotin [1], the deterministic LF (as the total time derivative of
a positive definite function), is replaced in the stochastic domain by the adjoint Fokker-Planck
(FP) operator

L{λ(t,u)} =
∂λ(t,u)

∂t
+

n∑

i=1

∂λ(t,u)

∂ui
κi +

1

2

n∑

i,j=1

∂2λ(t,u)

∂ui∂uj
κij, (1)

where κi, κij are the drift and diffusion coefficients of the n-dimensional Markov process and
m depends on the system structure

κi =
m∑

k=1

Aik(t)fik(u) +
1

2

m∑

k,l=1

n∑

p=1

∂fik(u)

∂up
fip(u) · siklp , κij =

m∑

k,l=1

fik(u)fjl(u) · sikjl . (2)

Eqs. (1) and (2) relate to the original stochastic system, the stochastic stability of which is being
assessed

u̇i =
m∑

k−1

(Aik(t) + wik(t))fik(u); u(t0) = u0, (3)

where λ(t,u) is the LF candidate, Aik(t) are the nominal values of the system coefficients,
wik(t) is the Gaussian white noise of cross-intensity sikjl, and fik(u) are the continuous non-
decreasing functions.

Function λ(t,u) should be a continuous positive definite. Its derivatives ∂tλ(t,u) and
∂u,uλ(t,u) should be continuous as well. Let ψ(t,u) = L{λ(t,u)} < 0 in u ∈ Ω and
ψ(t, 0) = 0 or ψ(t, 0) is not defined, λ(t,u) can be considered a Lyapunov function. Thus,
for any ||u0|| 6= 0 function λ(t,u) decreases for t → ∞ and, consequently, the trivial solution
of Eq. (3) is stable in terms of probability.
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It should be emphasized that an inappropriate choice of the form of the Lyapunov function
can lead to inconsistent results. Therefore, it should be designed very carefully. However, it is
well known that there is no universal method for constructing the Lyapunov function in either
the deterministic or the stochastic case.

2. Construction of the Lyapunov function
Let us assume that the following first integrals J1, . . . Js satisfy the equations of motion

J1(u) = C1, ..., Js(u) = Cs . (4)

The Lyapunov function can be selected as a linear combination of the first integrals and their
functions. The most convenient selection for practical purposes will obviously be

λ(u) =
s∑

i=1

ai[Ji(u)− Ji(0)] + bi[J
2
i (u)− J2

i (0)], (5)

where ai, bi are unknown constants that must be selected so that the function (5) satisfies the
conditions of the positive definiteness.

The first integrals of the type (4) are most often found in the context of cyclic coordinates.
In such cases, the corresponding Lagrange equation simplifies considerably

d

dt

∂T

∂u̇k
= Dk + Γk, (6)

whereDk and Γk are dissipative and gyroscopic forces, respectively, and T is the kinetic energy.
If the system is subjected to Gaussian parametric random white noises, the system has a

form
L {T} = −

∑
m ·Θm, (7)

where L{·} is the adjoined FP operator and Θm are the homogeneous functions of phase coor-
dinates and white noise intensities active in the system. The stability assessment procedure is
then similar to the deterministic case.

3. Stability of a spherical pendulum

Fig. 1. Outline of a pendulum
with coordinates

A spherical pendulum moves at a constant velocity around a ver-
tical axis in the coordinates ϕ (angle around the vertical axis)
and ξ (angle between the vertical axis and the pendulum sus-
pension) in a horizontal circle, see, e.g., [2]. Small random per-
turbations of this movement can be denoted as u1, u3, see Fig. 1,

ξ = α + u1 ; ξ̇ = u2 ; ϕ̇ = ω + u3, (8)

where α is the angle between the suspension and the vertical in
deterministic state ω2l · cosα = g, ω is the angular velocity of a
circular motion and l denotes the length of the suspension. The
perturbations u1, u2, u3 are assumed to be small.

Two first integrals can be obtained from the general principles of dynamics—total energy
T + Π and the total momentum

T + Π =
1

2
Ml2(ξ̇2 + ϕ̇2 · sin2 ξ)−Mgl · cos ξ , (9a)

∂T

∂ϕ̇
= Ml2ϕ̇ · sin2 ξ . (9b)
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Using Eqs. (9), it is possible to construct the Lyapunov function in the form of Eq. (5) and
examine the stability of the pendulum movement. In the given case, it is sufficient to use the
first part of Eq. (5), i.e., bi = 0 (i = 1, 2), which means

λ(u1, u2, u3) = a1 (J1(u)− J1(0)) + a2 (J2(u)− J2(0)) , (10)

where J1, J2 are written in the form originating from the substitution of Eqs. (8) into Eqs. (9)

J1(u) =
1

2
Ml2

(
u22 + (ω + u3)

2 sin2(α + u1)−
2g

l
cos(α + u1)

)
,

J2(u) = Ml2
(

(ω + u3) sin2(α + u1)
)
.

(11)

We shall select the parameters a1, a2 in the form of

a1 = 2
(
Ml2

)−1
, a2 = a

(
Ml2

)−1
.

where a should be determined from the constraint of positive definiteness of the function λ.
Substitution of Eqs. (9) and (11) into (10), and the assumption that ui, i = 1, 2, 3 are small,
yield

λ(u1, u2, u3) =u21ω
(
(a+ ω) cos 2α + ω cos2 α

)
+ u22 + u23 sin2 α+

u1ω(a+ 2ω) sin 2α + u3(a+ 2ω) sin2 α + u1u3(a+ 2ω) sin 2α + . . .
(12)

To make function λ(u1, u2, u3) positive definite, it is necessary to eliminate perturbations ui in
the first power. This occurs if a = −2ω. Function λ as a Lyapunov function, thus, takes the
form

λ(u1, u2, u3) = (u21 · ω2 + u23) sin2 α + u22 +O(u3i ) . (13)

The Lagrange equations of motion can be determined using the expressions for T,Π

ξ̈ − ϕ̇2 sin ξ cos ξ +
g

l
sin ξ = µl(ξ − α)w(t) ,

ϕ̈+ 2ϕ̇ξ̇ · cot ξ = 0 ,
(14)

where parametric (white) noise w(t) has been introduced into the first equation. Its effect is
proportional to the deviation from the basic inclination α. In Eqs. (14) we shall substitute for
ξ, ξ̇, ϕ̇ according to Eqs. (8) and modify this system into the normal form for u1, u2, u3

u̇1 = u2 ,
u̇2 = (ω + u3)

2 sin(α + u1) cos(α + u1)− ω2 cosα sin(α + u1) + µlu1w(t) ,
u̇3 = −2u2(ω + u3) cot(α + u1) .

(15)

In a linearized form

u̇1 = u2 ,

u̇2 = (ω2 cos 2α− g

l
cosα)u1 + ω sin 2α · u3 + µlu1w(t) ,

u̇3 = −2u2 · ω cotgα .

(16)

The general stochastic system is assumed to have a form

u̇i = fi(u) +
m∑

k=1

hik(u) · wk(t) ; u(t0) = u0 , (17)
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where the diffusion coefficients κi, κij are as follows:

κi = fi(u) ; κij =
m∑

k,l=1

hik(u)hjl(u) · skl . (18)

In this particular case, the respective coefficients (with m = 1) are

h1,1 = h3,1 = 0 , h2,1 = µlu1 ; f1 = u̇1 , f2 = u̇2 − h2,1w(t) , f3 = u̇3 . (19)

The first two parts of the adjoined FP operator (1) are equivalent to the total time derivative
of the Lyapunov function in the deterministic domain and only the third term with the coeffi-
cients κij represents a supplement introducing the influence of random parametric noises. Their
influence on the stability of the system Eqs. (17) is determined, consequently, exclusively by
the character of matrix h(u) and joint links of white noises wi(t). If, for instance, wi(t) are
independent white noises (sij = 0, i 6= j), the parametric noises are of destabilizing character
only. However, it is also possible to construct such h(u) matrices where the random noises
contribute to improve the stability of the system.

In the case of the spherical pendulum described by Eqs. (15) and LF (13), we obtain

ψ(u) = L{λ(t,u)}

= 2u1u2ω
2 sin2 α + 2u2

(
1

2
(ω + u3)

2 sin 2(α + u1)− ω2 cosα sin(α + u1)

)
−

− 4u2u3(ω + u3) sin2 α cot(α + u1) + u21 · (µl)2s11 .

(20)

The destabilizing effect of the noise w(t) is obvious. The stability of the system, therefore,
depends on the character of other right-hand side terms of Eq. (20). If we construct the function
ψ(u) on the basis of the linearized version of the normal system Eqs. (16), the right-hand side
of Eq. (20) will disappear except for the last term as a result of the character of the first integrals.
This means that in the linearized state the system is not stable. It can be stabilized by inserting
dissipative forces or by an adequate selection of the matrix h(u) and the characteristics of wi(t)
which, naturally, are determined by the physical character of the actual system.

4. Conclusion
The Lyapunov function constructed on the basis of first integrals provides a possibility to work
with the stochastic part of the problem with a much greater overview and to construct math-
ematical models with regard to the stabilizing or destabilizing effects of parametric random
noises. Such properties are due to the fact that the structure of the actual system is fully applied
to the very construction of the basic form of the function. This type of analysis is applicable
to a variety of dynamic stability problems, including naturally the problem of signal and noise
separation in structural health monitoring and various indirect measuring methods.
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1. Introduction 

The printed circuit boards (PCB) are complex geometrical and functional systems 

connecting electronic components for communication between them. PCBs also play an 

important role in protecting these components from their damage. It takes the form of 

a laminated sandwich structure of conductive copper layers and base material which is acting 

as an insulator. The base material FR-4 is made from a flame retardant epoxy resin and glass 

fabric, cf. Fig. 1. 

The printed circuit boards used in automotive industry are exposed to vibration-, static- and 

thermal-loadings. Field failures in electronic equipment hardware over a period of 20 years 

show that these failures are related to connectors, to interconnects, and to component parts. 

Around 20% of field failures related to operating environments are related to vibration- and 

shock- loading, [8].  During testing on shakers, the components must survive the load conditions 

according to the LV 124 / LV148 Automotive Test Standard, [3]. 

To avoid failure in operation environment, virtual testing of PCBs based on the dynamic 

models of the printed circuit boards is performed. For that reason, it is important to use in the 

simulation validated dynamic models of the PCBs whose system responses correlate with the 

hardware experiment. 

To achieve this, modal updating based on global optimization of surrogate model is 

performed. As a reference are used eigenshapes and eigenfrequencies from the experimental 

modal analysis (EMA). 

2. Experimental modal analysis 

The experimental modal analysis was performed with free-free boundary conditions by placing 

the PCB on the foam, see Fig. 1. The specimen was excited using an automatic impulse hammer 

(type: PCB 086E80), vibrations were measured by 1D doppler laser vibrometer (type: Polytec 

PSV 400-H4) in 175 sampling measurement points, see Fig. 1. 

 

Fig. 1. PCB cross section (solder mask, copper foil, FR4 prepreg, FR4 core), measurement set-up and measurement 

points [4] 
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Table 1. Results from EMA – summary of eigenfrequencies, [4] 

Mode [-] Frequency [Hz] Mode [-] Frequency [Hz] Mode [-] Frequency [Hz] 

1 140 7 827 13 1577 

2 207 8 927 14 1796 

3 350 9 1089 15 2007 

4 446 10 1153 16 2209 

5 652 11 1311 17 2313 

6 777 12 1527 18 2366 

 

        

   

In total, 18 eigenshapes have been extracted in the frequency range 20-2500Hz, see Table 1. 

Example of the eigenshapes can be found on Fig. 2 together with AutoMAC matrix showing 

proper choice of the evaluation points (off-diagonal terms evince very low values).  

AutoMAC is a special case of the modal assurance criterion (MAC) that is used to correlate 

simulation data with experimental data. The MAC is calculated as the normalized L2-scalar 

product of the two sets of vectors {𝜑𝑟} and {𝜑𝑠}. The resulting scalars are arranged into the 

MAC matrix as follows 

 𝑀𝐴𝐶({𝜑𝑟}, {𝜑𝑠}) =
|{𝜑𝑟}𝑇{𝜑𝑠}|

2

({𝜑𝑟}𝑇{𝜑𝑟})({𝜑𝑠}𝑇{𝜑𝑠})
 . (1) 

If the MAC value is 1 (red color), then eigenshapes {𝜑𝑟} and {𝜑𝑠} are identical, if MAC is equal 

to 0, eigenshapes are not correlating. MAC values above 0.8 are considered as indicator of high 

correlation, [6]. 

3. Model updating 

3.1.  Method description 

The model updating approach is based on the idea of tuning unknown parameters of the FE-

model such as material parameters, damping, stiffness variation. The choice of these uncertain 

parameters is based on the performing parametric space sampling in some optimal manner. 

Afterwards relevant parameters having highest influence on the change of eigenshapes and 

eigenfrequencies are identified. Change of the eigenshapes is evaluated using MAC whereas 

set of the selected reference eigenshapes is taken from the experiment. 

 

Fig. 4. Model updating workflow 

Fig. 2 Example of measured eigenshapes (mode#01, mode#02) Fig. 3. AutoMAC matrix with proper 

choice of evaluation points 
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This is followed by the creation of a surrogate model, and if its quality is high in some 

mathematical or physical sense, global optimization can be performed to maximize correlation 

of eigenshapes and eigenfrequencies. 

Since the optimum is found on surrogate model which could deviate from the results of the 

real FE-models, authors propose to perform gradient based optimization in the FE-solver with 

initial conditions given by the global minimum from surrogate model. The output from this last 

step are tuned and validated parameters of FE-model. 

3.2. Method Application and Results 

As an input were used all 18 measured eigenshapes and eigenfrequencies extracted from 

experimental modal analysis, cf. Tab 1. Finite element model of the PCB was created using 

hexahedral 1st order elements (28523 elements, 58144 nodes) and one element across the 

thickness with orthotropic material (MAT90RT) defined by parameters 𝐸𝑋, 𝐸𝑌, 𝐸𝑍, 𝐺𝑋𝑌, 𝐺𝑌𝑍, 

𝐺𝑍𝑋, 𝜈𝑋𝑌, 𝜈𝑌𝑍, 𝜈𝑍𝑋. 

The normal modal analysis was performed for first 30 eigenshapes evaluated in normal 

direction (Z-axis) in same points as in the measurement, cf. Fig. 1. 

For the space filling scheme in DoE study was used Modified Extensible Lattice Sequence 

(MELS), that equally spreads out points in a space by minimizing clumps and empty spaces, 

[1]. A total of 250 FE-model variants were simulated for input parameters constrained by 

material stability conditions, [5]: 

 𝐸𝑖 > 𝜈𝑖𝑗
2 𝐸𝑗 , (2) 

 1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈21𝜈32𝜈13 > 0 . (3) 

Since the simulation tasks are independent from each other, parallel execution of the tasks was 

performed. During these simulations responses such as eigenfrequency and MAC were 

monitored. Eigenshapes between EMA and FE-model were paired by mode tracking tool. 

Using a pareto plot, it was identified that the Youngs modulus in planar directions 𝐸𝑋 and 

𝐸𝑌 and the planar shear modulus 𝐺𝑋𝑌 of the FR-4 material have the highest influence on MAC 

and eigenfrequencies. 

Relative dense sampling of parameter space allows to derive surrogate model for relevant 

input parameters by automatic selection of the approximation methods as least squares, moving 

least squares, radial basis function (depends on the best approximation). During this phase, the 

𝑅2 parameter was monitored. Fitting functions with 𝑅2 less than 0,95 were neglected due to 

credibility [1]. For this reason, 14 eigenshapes (eigenfrequencies and MAC values) were used 

as an input for subsequent global optimization method instead of 18 measured from EMA. 

For searching global minimum on the surrogate model the genetic algorithm was chosen. 

Objective function was selected as weighted sum of squares of relative differences: 

 min ∑ 𝑤𝑖 (
𝑓𝑖−𝑓̃𝑖

𝑓̃𝑖
)

2
𝑛
𝑖=1 , (4) 

where 𝑓𝑖 stands for i-th eigenfrequency of optimized model and 𝑓𝑖 are reference of i-th 

eigenfrequency from EMA, weighting factor 𝑤𝑖 takes values from 0 to 1. As a constraint was 

used MAC with threshold value of 0.8. 

In the last step, gradient-based optimization of the FE-model was performed with same 

objective as in the global optimization. 

Comparison of the baseline material properties known from literature [4] with EMA is 

showing relative good correlation of the eigenshapes but evinces large deviations of the 

eigenfrequencies. The results of updated FE-model show low differences of the corresponding 

eigenfrequencies but with several degraded MAC values, see Table 2 and Fig. 5. 
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Table 2. Results from EMA – summary of eigenfrequencies, [4] 

 Frequency [Hz] Freq. diff. [%] MAC [-] 

pair # 
EMA 

(target) 

Before 

opti.. 
After 

opti. 
Before 

opti. 
After 

opti. 
Before 

opti. 
After 

opti. 

1 140 100 129 28.6 7.6 0.96 0.96 

2 207 179 213 13.5 2.9 0.99 0.99 

3 350 265 341 24.3 2.6 0.93 0.93 

4 446 384 466 13.9 4.6 0.97 0.97 

5 652 486 620 25.5 5.0 0.96 0.96 

6 777 624 778 19.7 0.1 0.85 0.96 

7 827 643 865 22.2 4.6 0.87 0.97 

8 927 722 922 22.1 0.5 0.91 0.90 

9 1089 827 1097 24.1 0.7 0.91 0.86 

10 1152 918 1160 20.3 0.6 0.92 0.90 

11 1311 1034 1329 21.1 1.4 0.92 0.90 

12 1527 1159 1518 24.1 0.6 0.83 0.77 

13 1576 1250 1573 20.7 0.2 0.85 0.80 

14 1796 1411 1816 21.4 1.1 0.89 0.86 

 

Fig. 5. MAC matrix correlation between EMA (reference model) and FE-model (correlation model) valideted 

material properties 

4. Summary 

Proposed automated workflow allows to perform model updating of relative complex structures 

as PCBs without consideration of detailed and time demanding models of the PCBs. 

Homogenized orthotropic material models simplifying complex PCB structure evince relative 

good correlation of the eigenshapes and eigenfrequencies which can be used in further studies 

as dynamic or vibration fatigue investigations. 

Presented method offers robust alternative to more complex and time demanding model 

updating of FE-models based on locally homogenized PCBs models, cf. [4], or offers an 

alternative to very detailed FE-models modeling copper traces in the FR4 material, [2, 7]. 
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Main goal of presented work is comparison of the results for cylindrical and spherical pressure 

vessel (manufactured by filament winding technology) obtained by analytical solution with 

results from finite element method (FEM). Classic lamination theory for shells is used in 

combination with netting theory (see [1] for an example) for determination of stresses in axial 

and circumferential direction. The assumptions for the solution comprise: 

• an elastic material model of the composite, 

• a wall thickness h that is significantly lower than the smallest radius of the shell, 

• an inner pressure that leads to membrane loading in the walls of the shell, 

• a composite wall that is a balanced laminate consisting of two layers with fiber 

orientations of ±ω of the same thickness and volumetric fiber contents. 

Cylindrical pressure vessel is manufactured with integrated domes (dome analysis is not 

presented in this study) with (90/±ω0/90) lay-up. Balanced laminated ±ω0 creates dome, hoop 

winding reinforces cylindrical part of the vessel (See Fig. 1). 

 

Fig. 1. Cylindrical part of pressure vessel 

Thickness of layers is given by the isotensoidal condition of the construction (same stress/strain 

in all layers), ±ω0 is given by the geodesic condition of the winding (ratio of polar opening r0 

and radius R of the cylindrical part of the shell – see Fig. 2). 

 

Fig. 2. The geometry and forces on the shell of the revolution of double curvature manufactured by means 

of helical winding 
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Spherical pressure vessel is manufactured with ±ω lay-up and it has maximum volume with 

minimum surface area [2]. Spherical shell is not isotensoid construction and compared to 

isotropic sphere, which is symmetrical to the centre, filament wounded sphere is symmetrical 

just to the axis of the rotating mandrel. For each filament wounded shell of the revolution of 

double curvature is typical change of thickness and winding angle along the meridian curve. 

Minimum thickness is on the equator, maximum thickness is near polar opening. Winding angle 

has its minimum on the biggest radius (equator) and its maximum (90°) near polar opening – 

stiffness/compliance/strength vary along meridian curve. 

For computational example a cylinder/sphere manufactured from glass/epoxy system with 

volumetric fiber content 60 %, loaded with inner pressure 1 MPa was chosen. Polar opening 

radius is r0 = 20 mm and radius R = 50 mm of the cylindrical part of the shell (or radius on 

sphere equator respectively). Last input parameters were thickness of hoop layers h1 = 1 mm 

for case of cylindrical vessel and thickness on equator h0 = 1 mm in case of spherical vessel. 

FE model was prepared in Abaqus software with the use of shell elements in spherical case and 

shell and continuum shell elements in cylindrical case. Comparison of calculated stress can be 

seen in Fig. 3 – 5 for cylindrical case and in Fig. 6 for spherical case.  

 
Fig. 3. Comparison of axial stress values for cylindrical case 

 
Fig. 4. Comparison of hoop stress values for cylindrical case 
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Fig. 5. Comparison of shear stress values for cylindrical case 

 

Fig. 6. Comparison of computed stress values for spherical case 

The analytical computations were prepared in the MATLAB code, which allows both for 

the rapid determination of the results and the simple changing of the input parameters (the 

material, the polar hole and the equator radius, the thickness, and the inner pressure). The FEA 

provided comparable results to those of the analytical solution for cylindrical case, for spherical 

case particularly for a normal angle of ψ of 90° to 40° (the difference amounted to 10%). The 

areas defined with a lower normal angle of ψ were affected by the closure of the polar hole and 

by the discretization of areas with the same thickness. 
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1. Introduction
Biped underactuated robots with an upper body (being a torso) form a subclass of legged robots.
This study deals with the walking performance of such class of legged robot models and has
been motivated by the need to implement of the previously developed sensor and control algo-
rithms for the real-time movement of the laboratory walking robot, designed and built at the
Department of Control Theory of the Institute of Information Theory and Automation (ÚTIA)
of the Czech Academy of Sciences, see Fig. 1 (left). A detailed description of this underactu-
ated walking-like mechanical system (called further UTIA Walking Robot – UWR) is provided
in [2] and [5]. The simplest underactuated walking robot hypothetically able to walk is the
so-called Compass gait biped walker, alternatively called the Acrobot, see Fig. 1 (right). For a
review of underactuated mechanical systems, i.e. systems with fewer actuators than degrees of
freedom, which encounter many applications in different fields (e.g., in robotics, in aeronautical
and spatial systems, in marine and underwater systems, and in-flexible and mobile systems), see
[3].

As follows, we examine the walking performance of parametrized models for different walk-
ing regimes and different values of model parameters. More specifically, the sensitivity analy-
sis (i.e., parameter study) of the walking performance with respect to certain design variables
(model parameters) is carried out using the software package alaska/MultibodyDynamics. The
main attention is attracted to the role of the upper body mass m3 and position lc3, see Fig. 1
(right).

Last but not least, having surveyed the mechanics of planar biped robots, our subsequent
goal is the analysis of a 3D biped model where lateral balance is either controlled, suppressed
or compensated.

2. Model formulation
The robot model, see Fig. 1 (right), is planar, with two rigid massless legs of length ll, i.e., with
pointmasses (scaled masses m1 = m2 = mf = 0.1) as feet (where scaled lengths lc1 = lc2 =
ll = 1), a finite pointmass (scaled mass m3 = 0.3) at the hip joint (pelvis). Moreover, the upper
body (a scaled pointmass mb = 0.7) is connected via a rigid, massless stick (of scaled length
lc3 = 0.4) to the hip joint, see Fig. 1 (right). There are two degrees of freedom mechanism for
one pair of legs without knees, ankles and feet actuated only in the hips. Moreover, an additional
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Fig. 1. (Left) UTIA Walking Robot: laboratory mechatronic walking robot-like system – immobile until
now; (right) Compass gait biped walker with upper body: parameters and coordinates

(third) link is representing a torso (within the pelvis) in the human body description. Thus, there
are 3 planar links in form of rigid sticks with pointmasses at the end and one degenerated point-
like link of scaled mass (1−mb) which connects all 3 stick-like links together. As it was already
mentioned, the mass and length parameters are dimensionless. The mass scaling is done using
the total mass (pelvis + upper body), for the length scaling is used the leg length ll.

Furthermore, it is convenient to introduce two actuated hip joints, i.e., the upper body (the
torso) is not actuated. For instance, for sake of simplicity, the upper body position described by
the angle θ3 undergoes the kinematic coupling, modelled as simple as possible, i.e., the third
link with upper body mass dwells in midway between the two legs

θ3 =
θ1 + θ2

2
. (1)

The above restriction (1) makes the Compass gait system fully actuated and represents a
starting point to more complex ones.

3. Walking performance
As it was stated in the Introduction, we aim to study the walking performance of our model for
different walking regimes and different values of upper body length. This sensitivity analysis is
carried out using the software package alaska/MultibodyDynamics [1]. The energy consump-
tion of the model is usually represented in the non-dimensional form of specific resistance,
which is defined as the energy consumption per distance traveled per kilogram mass per grav-
ity, see [4] and references within there.

For the previously computed trajectories, we perform numerical simulations on a robot
model derived from the software package alaska/MultibodyDynamics. Afterwards, we solve
the corresponding torques at both hip joints (based on the D’Alembert principle). Finally, for
this relatively simple case of a bipedal robot walking in two dimensions, we calculate how the
cost functional, being the specific resistance, depends on the upper body length.
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Fig. 2. Visualization of the Compass gait biped walker (with the description of kinematic joints) by
Alaska 2.3 simulation tool

4. Conclusions
In this work, using the Alaska simulation tool, we studied the sensitivity of the walking per-
formance of a class of biped robot models with respect to the upper body length. Encouraged
by the successful implementation of the model kinematics, the analysis of system dynamics is
conceived for the near future. In this way, we are open to the possibility of running a similar
study concerning the robot model stability, or more precisely, to describe the stability of the
walking for different upper body lengths. Here, the expected result is to find in some sense op-
timal realisation of the robot geometry for a specific walking regime. The optimization of both
the robot geometry and walking regime (distribution of the torque to be applied into actuators
at the hip) are left for a future publication.
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Numerical modelling of mechanical systems is a helpful tool for system behaviour analyses. 

There are several well-known commercial softwares that deal with different solution areas. 

When interdisciplinary tasks are solved, the possibility of using software is more limited. It is 

due to many differences in the specific field of solutions as structural analyses, temperature 

distribution, heat transfer, etc. Therefore, solvers based on finite element method (FEM) are 

limited to a narrow group of solvable problems for the most part or they are generalized to 

universal problems. For specific analyses of aircraft engine rotors, a FEM solver consisted of 

MATLAB scripts was developed where different types and scopes of the task are implemented. 

Optional choice of boundary and initial conditions are possible as well. This contribution deals 

with a sensitivity analysis of the basic thermodynamic parameters during the operation of the 

aircraft engine rotor and their influence on the structural analysis and, above all, the deformation 

of the system. 

The problem of the thermal bow has been known and solved in the field of energy for a long 

time. Zhuo [7] introduced a new computational method for thermal bow predicting on heavy 

gas turbines. The subsequent vibrations affecting the safe operation during restart of the rotor 

system caused by the temperature bowed rotor were presented in several works, for example in 

Chatterton [1], Pennacchi [4], or Marinescu [2]. In the field of aircraft engines, the rotor thermal  

 

 

Fig. 1. Sketch of the turbine engine rotor system computational domain 
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deformation is very significant due to high temperature exposures and the radial clearance 

limitation which influences the efficiency. A significant contribution to research in this area 

was made by E.O. Smith in [5]. Last but not least contribution in thermal bow research, 

supplemented with experimental measurements by research at the Harbin Institute of 

Technology [6, 8]. 

Fig. 1 shows a sketch of simplified turbine aircraft engine rotor system computational 

domain including the location of prescribed boundary conditions. The two axial compressor 

discs on the right side are followed by a simplified model of the centrifugal compressor impeller 

in the centre of the rotor system. The generator turbine disc is located on the left side of the 

rotor system and ends with a disc of labyrinth seals. 

According to the following table Table 1., initial and boundary conditions for temperature 

field distribution are prescribed. All listed values are given in degrees Celsius. Dirichlet 

boundary conditions are considered for surfaces with heat transfer and oil cooling. As 

mentioned above, locations of the boundary conditions are shown in the figure Fig. 1.  

Table 1. Prescribed boundary condition for the turbine engine analysis 

 BCT1 BCT2 BCT3 BCT4 BCT5 BCT6 BCT7 BCS1 BCS2 

Case 1 
448 548 424 371 338 277 260 

Pinned Roller 
412 502 410 348 327 252 247 

Case 2 
465 787 553 432 385 282 268 

Pinned Roller 
449 742 536 408 372 264 251 

Case 3 
494 926 674 493 421 287 272 

Pinned Roller 
473 875 647 462 401 269 254 

Case 4 
448 548 424 371 338 277 260 

Pinned Pinned 
412 502 410 348 327 252 247 

Case 5 
465 787 553 432 385 282 268 

Pinned Pinned 
449 742 536 408 372 264 251 

Case 6 
494 926 674 493 421 287 272 

Pinned Pinned 
473 875 647 462 401 269 254 

 

The rotor system is supported by two bearings BCS1 and BCS2. In the analysis, variants when 

bearing displacement is possible are considered for Cases marked as 1 – 3 and the variant of a 

stuck bearing with a restriction to displacement for dilation for Cases denoted as 4 – 6. 

Furthermore, BCT1 – BCT7 represent the temperatures in significant areas divided into the upper 

and lower side when considering the inhomogeneous distribution of the temperature field due 

to the developed natural convection published in [3]. BCT7 and BCT6 represent the first two 

stages of the axial compressor. BCT4 to BCT5 represents the centrifugal compressor impeller. 

BCT3 is the area of the combustion chamber cooled by flowing fuel. BCT2 is the generator 

turbine wheel area and BCT1 stands for the temperature in the labyrinth seals. 

Temperatures are considered for the turbine engine cooling when it is shut down after 5 

minutes in three stable flight modes, i.e., idle mode, cruise mode and maximum take-off mode. 

In the figure Fig. 2., there is a visualization of the calculated temperature field for the Case 

6 representing the maximum take-off mode under the influence of the boundary conditions 

listed in the table Table 2. The deformation of the rotor without the possibility of axial dilation 

of the rotor system for the same case is shown in figure Fig. 3. 
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Fig. 2. Temperature field distribution on the turbine engine rotor system 

 
Fig. 3. Deformation and deflection distribution on the turbine engine rotor system 

Fig. 2 shows the variable distribution of the temperature field due to heating from the 

flowing gases on the generator turbine as well as other structural nodes of the turbine engine. 

The asymmetric temperature field distribution between the upper and lower sides of the rotor 

is considered due to cooling by natural convection. 

The asymmetry and inhomogeneous temperature field results in the rotor deformation 

shown in Fig. 3. Axial and radial components of the deformation are indicated by blue vector 

lines for each node of the computational mesh. Total deflection of the rotor centreline is plotted 

as a red curve, for clearer visibility this deflection is plotted as tenfold of this deformation.  

The maximum rotor deflection, together with its position, are listed in Table 2 for all 

specified cases. 
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Table 2. Maximum deflection for specified cases 

 
Max. deflection 

[mm] 

Max. deflection 

distance [mm] 
BCS1 BCS2 

Case 1 0.235 162 Pinned Roller 

Case 2 0.224 165 Pinned Roller 

Case 3 0.305 167.5 Pinned Roller 

Case 4 0.498 240 Pinned Pinned 

Case 5 0.483 238 Pinned Pinned 

Case 6 0.613 232.5 Pinned Pinned 

 

The resulting deflections of the rotor axis due to the temperature field distribution after 

shutting off the engine in the defined modes can be seen from Table 2. There is an increase in 

deflection with the increasing temperature difference of the asymmetric temperature field at 

higher speed mode. There is also a requirement for the functionality of the axial displacement 

of bearing which is also of key importance for the dynamic behaviour of the rotor system. The 

results show a dependence on the position of the maximum deflection, which is not much 

dependent on the selected mode respectively temperatures but dependent on the possibility of 

axial displacement of the bearing. 

Acknowledgements 

Authors acknowledge support from the ESIF, EU Operational Programme Research, 

Development and Education, and from the Center of Advanced Aerospace Technology 

(CZ.02.1.01/0.0/0.0/16_019/0000826), Faculty of Mechanical Engineering, Czech Technical 

University in Prague. 

This work was supported by the Grant Agency of the Czech Technical University in Prague, 

grant No. SGS19/157/OHK2/3T/12. 

References 

[1] Chatterton, S., et al., An unconventional method for the diagnosis and study of generator rotor thermal bows, 

Journal of Engineering for Gas Turbines and Power 144(1) (2022) 011024. 

[2] Marinescu, G., Ehrsam, A., Experimental investigation into thermal behavior of steam turbine components. 

Part 2 – Natural cooling of steam turbines and the impact on LCF life, ASME Turbo Expo Copenhagen, 

Denmark, 2012. 

[3] Pařez, J., et al., Experimental and numerical study of natural convection in 3D double horizontal annulus, 

EPJ Web of Conferences, 2022, 264(1), ISSN 2100-014X. 

[4] Pennacchi, P., Vania, A., Accuracy in the identification of a generator thermal bow, Journal of Sound and 

Vibration 274 (2004) 273-295. 

[5] Smith, E., Neely, A., A study of cranking effectiveness as a treatment for rotor thermal bow in gas turbines, 

International Society of Airbreathing Engines (2019) 24025. 

[6] Yuan, H.Q., et al. Dynamic characteristics of transient thermal starting up of a rotor system, Journal of 

Vibration and Shock 28 (2009) 33-37. 

[7] Zhuo, M., et al. A new computational method for predicting the thermal bow of a rotor, Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science (2019) 4372-4380. 

[8] Zhu, X.Z., et al., Effects of steady temperature field on vibrational characteristics of a rotor system, Journal 

of Northeastern University 29 (2008) 113-116. 

106



 

Effects of hardenability on mechanical properties of tool steel 

56NiCrMoV7 for forging die 

M. Paulec, P. Kopas, M. Sága 

Faculty of Mechanical Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic 

1. Introduction 

Hot forging is a way to preform metal parts quickly and at low cost. It belongs to the methods 

of mass forming of metals. The high strength of components produced by this method has drawn 

special attention to this method in various industries such as aerospace, marine, railway and 

automotive. Forging processes normally involve two dies that press the hot billet into the 

desired shape. Hot forging enables complicated geometry with a reduced amount of mechanical 

energy. Hot forging has two main disadvantages. The first disadvantage is a deformed billet, 

which due to the impossibility of surface quality and geometric tolerance (surface oxidation, 

thermal contraction, the possibility of phase transformation in some alloys, etc.). The second is 

the cost of heat forging dies. The cost of hot forging dies is generally estimated at 8 to 15% of 

all manufacturing costs. For small production runs, it can reach 30% or even 50% if unexpected 

damage is considered. [2] 

Most unexpected failures of hot forging dies are caused by inappropriate die materials, die 

design, die manufacturing, or forging operations. In addition, there are insufficient forging ratio, 

insufficient cleanliness and heat treatment of the dies, small radius of corners, insufficient width 

and thickness of the die, insufficient surface treatment, repair of the weld surface of the die, 

insufficient preheating, insufficient surface of the die and lubrication. The main factors that lead 

to unexpected failure of hot forging dies. [3, 1] 
 

 
 

Fig. 1. Broken part of forging die 
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2. Experimental materials and method 

The frequently used tool steel 56NiCrMoV7 was used as the experimental material. A chemical 

analysis was conducted, and the outcomes are displayed in Table 1.  

Table 1. Chemical composition of a fractured die made of 56NiCrMoV7 steel 

Element C Si Mn Cr Mo Ni V P S 

Ratio in % 0.56 0.38 0.68 0.79 0.50 1.69 0.06 0.006 0.0015 

 

The die material was supplied in the form of a forged and heat-treated steel block with 

dimensions of 670x480x320 mm, which was heat treated - hardened and tempered to a surface 

hardness of 44 HRC. 

A static tensile test was used to detect the decrease in mechanical properties. In Fig. 2 is 

geometry and dimension of specimen for static tensile test. 

 

Fig. 2. Geometry and dimensions of specimen for static tensile test 

A fatigue test was used to detect the decrease in mechanical properties. In Fig. 3 is geometry 

and dimension of specimen for static tensile test. 

 

 

Fig. 3. Geometry and dimensions of specimen for fatigue test. 
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3. Results 

The results of the static tensile test for a set of material 56NiCrMoV7 hardened and tempered 

to a hardness of 44 HRC are in Table 2. The average value of upper yield point is 1196 MPa. 

The average value of tensile strength is 1377 MPa. The average value of elongation is 10,4 % 

MPa. 

Table 2. Mechanical properties of steel 56NiCrMoV7 hardened and tempered to the hardness of 44 HRC 

Name Upper yield point Tensile strength Elongation  

Units 𝐑𝐞𝐇 [𝐌𝐏𝐚] 𝐑𝐦 [𝐌𝐏𝐚] 𝐀 [%] 

Measurement 1 1208 1394 10.8 

Measurement 2 1185 1369 9.9 

Measurement 3 1197 1375 10.3 

Measurement 4 1177 1336 9.7 

Measurement 5 1213 1411 11.3 

Average 1196 1377 10.4 

 

The results of the static tensile test for a set of material 56NiCrMoV7 hardened and 

tempered to a hardness of 34 HRC are in the Table 3. The average value of upper yield point is 

789 MPa. The average value of tensile strength is 994 MPa. The average value of elongation is 

12,6 % MPa. 

Table 3. Mechanical properties of steel 56NiCrMoV7 hardened and tempered to the hardness of 34 HRC 

Name Upper yield point Tensile strength Elongation  

Units 𝐑𝐞𝐇 [𝐌𝐏𝐚] 𝐑𝐦 [𝐌𝐏𝐚] 𝐀 [%] 
Measurement 1 775 971 11.5 

Measurement 2 809 1027 13.7 

Measurement 3 798 1013 13.1 

Measurement 4 785 982 12.5 

Measurement 5 778 977 12.2 

Average 789 994 12.6 

 

The hardness test results showed a decrease from 44 HRC to 34 HRC. The maximum drop 

of hardness was at a height of 160 mm from surface. The hardness drop graph can be seen in 

Fig. 4. 

 

Fig. 4. Graph of drop hardness 
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The results of the fatigue test for a set of material 56NiCrMoV7 hardened and tempered to 

a hardness of 44 HRC and 34 HRC are in the Fig. 5. Based on the results, a decrease in fatigue 

can be seen.  

 

 

Fig. 5. Graph of decrease fatigue life 

4. Conclusions 

Based on research devoted to the issue of the decline of mechanical properties, the following 

can be said: 

 the upper yield point drop is 33%, 

 the tensile strength drop is 29%, 

 the decrease in hardness due to hardenability is 25%. 
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Online identification using linear neural unit
with guaranteed weights convergence

V. Pawlik, P. Steinbauer, I. Bukovský
Faculty of Mechanical Engineering, CTU in Prague, Technická 4, 160 00 Praha 6, Czech Republic

For many modern control strategies, a model of the controlled plant must be known. This
model does not need to be known a priori and can be found online using an adaptive process.
Online identification is very useful, especially if the plant’s properties change during the run, for
example, in context of vibration testing. This model can be a high order neural unit (HONU),
such as a linear neural unit (LNU) with structure

ym =
n∑

i=0

wixi = wTx, (1)

where x is the input vector and w is the neural weights vector [1].
The general HONU output formula is

ym = wT colx, (2)

where w and colx are both column vectors. The neural weights w can be adapted using a gra-
dient descent algorithm, for example, normalised least mean squares (NLMS), which is derived
by optimising a criterion

J =
1

2
e(k)2, (3)

where the error e is the difference between the desired and the current output

e(k) = y(k)− ym(k). (4)

The gradient of the criterion J with respect to w, which is the steepest direction, is

∂J

∂w
= e(k)

(
∂J

∂w
y(k)− ∂J

∂w
ym(k)

)
= e(k) (0− colx)) = −e(k)colx. (5)

The weights are then adjusted toward the minimum of the criterion

w(k + 1) = w(k)− µk
∂J

∂w
= w(k) + µne(k)colx(k), (6)

using a learning rate µn = µ 1
ε+||colx(k)|| , where ε ≈ 1e−5 and the normalisation improves con-

vergence and µ ∈ (0, 2).
To assess the performance of HONU, the sum of squared errors (SSE) over a certain horizon

Ne might be used

SSE =
k∑

i=k−Ne

e(i)2. (7)
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To ensure convergence of the weights [2], the learning rate µ might be chosen iteratively
such that

||A(k)|| = ||I− µncolx(k)colx(k)T || ≤ 1, (8)

where I is the identity matrix and A(k) is the matrix of update dynamics

w(k + 1) = A(k)w(k) + B(k)u(k) =
(
I− µncolx(k)colx(k)T

)
w(k) + µny(k)colx(k). (9)

At the start of the adaptation process the value µ = 2 is chosen and the decreased µ(k + 1) =
0.9µ(k), until the condition (8) is satisfied. Then the weights are updated using the update rule
(6). If the condition is violated during the run, then the learning rate µ is lowered until a value
that satisfies the condition is reached again.

A plant with a transfer function

Y (s) =
30530s+ 3.765e06

s4 + 204.2s3 + 15278s2 + 415450s+ 588660
U(s) (10)

was used as a test system with square wave input signal. The input signal and the system output
are shown in Fig. 1 with time step ∆T = 0.01 s.
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y

Fig. 1. The input and output of the testing plant

The input vector x consist of bias and a number of samples of the input and output of the
plant

x(k + 1) =




1
u(k + 1)

...
u(k − nu + 1)

y(k)
...

y(k − ny)




, (11)

where nu and ny are chosen such that the best performance is achieved. The performance of
various choices is shown in Fig. 2. Performance is measured with Ne = 100.
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Fig. 2. Performance of the LNU for identification with various choices of nu and nu. The best perfor-
mance is achieved with nu = 10 and ny = 2

The linear neural unit shows great performance in the identification of the plant. The plant
is sufficiently approximated for a wide selection of nu and ny, which is enabled by the selection
of µk that guarantees the convergence of the weights. In future work, this approach will be used
to automatically identify a model for an adaptive controller.
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Fig. 2. (Continued)
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Numerical simulations of aeroelastic instabilities in turbine blade 

cascade by modified Van der Pol model at running excitation 

L. Pešek, P. Šnábl, C. S. Prasad, Y. Delanney 

Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, 182 00 Prague, Czech Republic 

Apart from rotary test rig for evaluation of structural dynamics of the bladed wheels, the 

control flutter experiments have been performed on the linear cascade model in the subsonic 

wind tunnel in the Institute of Thermomechanics, of CAS, in Prague. These experiments are 

aimed at stability evaluation of the cascade at running waves or at stability limit testing by 

flow speed changes or by force impulses of blades.  The onset of flutter and its spreading in 

the cascade are observed, too. The linear cascade model consists of five NACA010 blades. 

All the blades can be separately excited with electromagnetic torque excitation mechanism 

and all of them are instrumented to measure the aerodynamic moments which can be used to 

calculate the aerodynamic work. A more details about the linear blade cascade experimental 

set up can be found in [3, 8]. To predict a dynamic behaviour in the blade cascade, we have 

been dealing with simplified theoretical modelling of the aeroelastic instability in turbine 

blade cascade [2, 4, 5]. Due to the application of the reduced cascade model consisting of 

simple elements – springs, rigid bodies, linear dampers – and aeroelastic forces introduced by 

analytical Van der Pol model, it facilitates to study the dangerous states of vibration of such 

complicated turbine parts [1, 6, 7, 9]. This study is aimed at examination of aeroelastic 

instabilities of 10-blade cascade at running excitation that arises due to the wakes flowing 

from stator the blades to the rotating blades. They cause forced excitation in the narrow 

frequency range. 

The computing model of turbine wheel with ten blades with the simplest type of linear 

connections between neighbouring blades. The sector of blade cascade is shown in Fig. 1. 

 

Fig. 1. Section of blade cascade 

The blades’ interconnections gi are defined by stiffness 
1k and viscous damping b1 

constants. These viscous-elastic connections between neighbouring blades can express 

dynamic properties of connections in turbine disk, blade-shroud or damping wires. The 2 

DOF profile has the centre of mass in point T. Corresponding moment of inertia is I. Flexural 

axis of this profile is labelled by O1 and the transitional stiffness in vertical direction y is k. 

Parallel to the elastic force acts also viscous damping force with coefficient b. Pitch spring 

stiffness around this flexural axis is kt.. This stiffness is again parallel connected by a damping 
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moment with torsional damping coefficient bt. The vertical aerodynamic force F acting on the 

blade in direction y is shifted in distance e2 into point O2. There is also an aero-elastic moment 

1 2( )eM F e e   acting around the flexural axis O1 and oriented to increase of pitch anglea . 

The aerodynamic forces F act on the blades in points O2 in distance of e2=0.005m from the 

elastic axes O1. The flowing steam through the rotating blade cascade produces besides 

periodic forced vibration also vertical and torsional aero-elastic self-exciting forces 
,eV iF and 

,e iM , respectively. Steam flowing through the rotating blade-cascade can cause decrease of 

damping and aero-elastic flutter instability. Exact mathematical model of this aero-elastic 

phenomenon is very complicated; therefore we will proposed Van der Pol model [4] which 

can describe two aerodynamic effects: the first one acting on individual blades controlled by 

only one blade’s motion and the other one, considered here, interacting blades controlled by 

relative motions of neighbouring blades  

 
2 2

, 1 1 1 1 1 1 1 1(1 (( ) / ) )( ) (1 (( ) / ) )( )eV i i i i i i i i iF y y r y y y y r y y             ,     

 
2 2

, 2 1 2 1 2 1 2 1(1 (( ) / ) )( ) (1 (( ) / ) )( )e i i i i i i i i iM r r a a a a  a a a a            , (1) 

where , , ,i i i iy y a a  are vertical and angular displacements of blade i and their velocities, r1,2 

are displacement limits of blades at which the aerodynamic forces change their sign, μ1,2  give 

intensities of the considered models.  

When the periodic excitation forces and the modified type of Van der Pol forces (1) are 

applied, differential equations of blade cascade are 

 

2

1 1
, 1 0

1 2 , , 1 1 2 0

( ) cos( ( 1) ),

( ) ( ) cos( ( 1) ),

t
i i i i eV i i i i

i t i t i eV i e i i i

k me kme
my k y by F g g F t i

I I

I k b e e F M ke y e e F t i

a  

a a a  

          

          
    1,.....,10,i   (2) 

where 1 1 1 1( ) ( )i i i i ig k y y b y y     are viscous-elastic connections among blades. Conditions

11 1 ,11 ,1 ,11 ,1,  ,eV eV e eg g F F M M    preserve circular periodicity of the system. 

Response curves are computed in the following example for backward running force 

excitation when 2 / 5    at noozle excitation frequency 62.8 /rad s  . It corresponds 

to 12 stator blades and revolution frequency 1.25 Hz. The structural profiles parameters  

 m = 0.18 kg, k = 50000 kg s-2, b = 2 kg s-1, I = 0.000025 kg m2, kt = 1 kg m2 s-2, 

     e1 = e2 = 0.005 m, bt = 0.00005 kg m2 s-2/rad (3) 

and amplitude of external wake force F0 = 0.01 N were applied, too.  

As to the intensity factor of Van der Pol model (1) we considered its linear growth over 

time given by coefficient c . Therefore, we extend the system of differential equations (2) by 

equation of the first order c   with initial condition 1(0) 5 4e kgs   and constant

0.1745r rad . The linear growth of intensity factor simulates the increase of instability in 

flow due to gradually increasing flow speed. 

As a simulation case, we choose herein no inter-blades viscous-elastic Kelvin-Voigt 

connections and only damping connections are via modified van der Pol model of flow aero-

elastic forces which corresponds to the tested linear cascade. The time characteristics of the 

first blade displacements and its aerodynamic moment (Fig. 2) show that flutter arises at time 

cca 1 s when intensity coefficient achieves a value 5.5e-3. Due to arising self-excited 

vibrations on the first torsional eigen-frequency the dominant vibration are observed at 

torsional mode but it causes also increase on vertical displacements. Even after stabilization 

of vibrations at time 1.5 s the amplitude of vibrations are not constant and course of vibration 

is non-stationary.  
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Fig. 2. Time characteristics of amplitudes of vertical and angle displacements (a,b) of 1st blade, of aerodynamic 

moment of 1st blade (c) and of intensity coefficient (d) at excitation frequency 10 Hz and 2 / 5     

In Fig. 3 we can see mode of vibration across the cascade at certain times: a) at the onset 

of flutter; b) at the flutter state. It is clear that till the onset of the flutter the mode of vibration 

has shape of eigenmode with 2 ND and this mode is travelling. However in the state of flutter 

the vibration mode becomes more complex with higher number of ND. Both these modes are 

still travelling.  However, in longer times (above 3.7 s) when the flutter is more developed, a 

mode of 4ND prevails at the vibration and this travelling mode becomes standing. 

 
Fig. 3. Modes of vibration of the cascade at times at the beginning (1s) and at at two flutter states (at 2 s and 4 s) 

 

a) 
 

 

 
 

 

 

b) 
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d) 
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The results of numerical simulations bring valuable findings about dynamic behaviour of 

the blade cascade of turbine wheels under running nozzle excitation and arising travelling 

waves at onset and development of the flutter state. The numerical simulations can be further 

exploited for testing a new algorithm for prediction of the flutter onset detection. 
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Treatise on dynamic behaviour modelling of tilting pad journal
bearing under operating conditions:

From the real world to numerical simulations
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bVýzkumný a zkušebnı́ ústav Plzeň, Tylova 1581/46, 301 00 Plzeň, Czech Republic

Tilting pad journal bearings, see Fig. 1a, are used to support machinery with journals of high
circumferential speed. A unique design of these bearings prevents the formation of oil-induced
instability and causes low sensitivity to load direction, reducing the shaft axial misalignment
and is known for relatively low oil consumption [2]. The pads can tilt around the pivots with
respect to the journal and the housing, see Fig. 1b.

rocker
back

ball and
socket

flexure
pivot 

ball and
socket

nominal
configuration

pad 4 in
a „spragged”
configuration

12

3 4

12

3 4

a) b) c)

d)

Fig. 1. (a) Tilting pad journal bearing with four pads, (b) various pivot designs, (c, d) comparison of
common and abnormal operating configurations of the bearing

The pads are supplied with lubricant oil which fills the bearing gap during the operation. In
the ideal case, the bearing gap has a wedge form, see Fig. 1c. Lower pads are loaded mainly by
rotor mass and tend to tilt to achieve a convergent bearing gap from the leading edge. However,
upper pads are loaded only by their mass and can move freely in the bearing gap [1, 2]. In this
case of the unloaded pad, the leading edge can come close to the journal and form the divergent
bearing gap, see Fig. 1d, due to operating conditions dependent on the preload, pad moment of
inertia, volume of supplied oil, circumferential journal speed and pivot position. Furthermore,
the pressure gradient disappears, and solid contact between the journal and the pad can occur.
This state can be distinguished into two phenomena [1, 4]:

• Spragging – the journal and/or pad positions jump into the new positions due to rapid
changes in the pressure field.
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• Fluttering – repeated formation and reformation of the pressure field cause fluctuation
and/or solid contact between the bearing parts, and vibrations at subsynchronous fre-
quency occur.

Computational modelling of tilting pad journal bearing is a complex problem involving the
modelling of hydrodynamic lubrication and sufficient description of the pads’ motion [4]. The
planar lateral motion of the pad without axial misalignment is supposed. Hence, the pad motion
is described by one degree of freedom (tilting around the pivot necessary for proper tilting pad
journal bearing operation). The additional degree of freedom (radial) can be added to consider
the radial pivot flexibility under the loading transferred through the oil film.

A load of the individual pad is mainly given by pad preload and can be considered different
for separate pads. The spragging or fluttering phenomena can occur in case of improperly
chosen preload, mainly for upper pads. Then, the bearing clearance can disappear and the
modelling of solid contact between the part based on Hertz contact theory must be taken into
account.

The pressure distribution in the bearing gap is given by the Reynolds equation. The laminar
or turbulent flow is distinguished based on the Reynolds number, which involves the bearing
dimensions and operating conditions. Developed hydrodynamic pressure acts on the bearing
parts by the hydrodynamic force determined by pressure integration over the pad surface. It is a
nonlinear force coupling. A slight change of resultant force sets the pad into motion. Pressure
distribution is influenced by the relative position of the pads and the journal. Another aspect of
the bearing modelling is the thermodynamics in the lubricant flow, which affects the dynamic
viscosity of the lubricant and cavitation.

The friction in the pivots, mainly in the ball-and-socket coupling, can be considered, and
the stick and slip phases of the pad can further occur. The friction has a negative role on the
pad tilting behaviour, and the global bearing behaviour can be close to the bearing with fixed
geometry. The most used friction models are the Bengisu-Akay model and the Lugre model [3].
Both models are susceptible to the control parameters, and it is necessary to focus more on their
establishment during the modelling.

Fig. 2. Obtained waveforms for tilting angle of pad 4 and contact forces at the leading and trailing edges

Obtained waveforms from the steady-state simulations [4] of the unbalanced rotor supported
by the four-pad tilting pad journal bearing in the configuration load-between-pads are depicted
in Fig. 2. The figure contains the tilting angle of a lightly loaded upper pad 4 (Fig. 1) and contact
force at the leading and trailing edges for various rotor speeds. The pad lies on the rotor for a
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speed of 3000 rpm, and the contact force fluctuates due to journal vibrations. For higher rotor
speeds, the pad tilts out of the journal and repeatedly hits the journal, see the force impulses at
the leading edge. The tilting angle becomes irregular or chaotic due to pad hits and changing
operating conditions. The contact at the trailing edge is secured by hydrodynamic force from
the newly reformated pressure gradient during the pad tilting. The solid contact at this edge
does not occur.

Long-lasting operation with undesirable phenomena has a negative impact on the durability
of the affected pad. The main problem is the damage at the place of contact between the pad
and the journal [1]. It is the leading edge of pad 4 along the whole axial length. This damage
is apparent in illustrative Fig. 3. This failure progress to 1/3 of the pad surface in the journal
rotation direction. Repeated impacts negatively affect durability due to the development of
cracks and the cover layer can disappear [1], see Fig. 3. Operating diagnostics of undesirable
phenomena is quite tricky. Distinguishing of the phenomena during the operation is dependent
only on sensors capturing the relative and absolute bearing pedestal vibrations. The sensors
measuring the tilting angle are not usually installed, and the pad’s spragging and fluttering are
not directly detectable.

Fig. 3. Illustrative scheme of Crack failure development at the leading edge of the pad [1]
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1. Introduction
We consider fluid-saturated poroelastic structures characterized by unilateral self-contact at the
pore level of the periodic microstructure. The unilateral frictionless contact interaction is con-
sidered on matching pore surfaces of the elastic skeleton. Depending on the deformation due to
applied macroscopic loads, the self-contact interaction alters the one between the solid and fluid
phases. Both the disconnected and connected porosities are treated; in the latter case, quasistatic
fluid flow is described by the Stokes model. We derive two-scale models of the homogenized
porous media for the two types of porosities using the framework of the periodic unfolding ho-
mogenization [2, 4], cf. our previous paper [5] where only empty pores were considered. For the
closed pore microstructures, a nonlinear elastic model is obtained at the macroscopic scale. For
the connected porosity, a regularization is introduced, assuming the contact interaction never
close perfectly the pores, which prevents the pore connectivity. The macroscopic model attains
the form of a nonlinear Biot continuum, whereby the Darcy flow model governs the fluid re-
distribution. To respect that the permeability and other poroelastic coefficients depend on the
deformation, an approximation based on the sensitivity analysis is employed [6].

We propose and test new modifications of the original two-scale computational algorithm
reported [5] which is based alternating micro- and macro-level steps. As a novelty, a dual
formulation of the pore-level contact problems in the local representative cells provides actual
active contact sets which enables to compute consistent effective elastic coefficients at particular
macroscopic points. At the macroscopic level, a sequential linearization leads to an incremental
equilibrium problem which is constrained by a projection arising from the homogenized contact
constraint, such that the Uzawa algorithm can be used. At the local level, the finite element
discretized contact problem attains the form of a nonsmooth equation which which is solved
using the semi-smooth Newton method [3] without any regularization, or a problem relaxation.
Numerical examples of 2D deforming structures are presented.

2. Problem formulation
In the framework of the unfolding method of homogenization, using the asymptotic analysis
with respect to heterogeneity scale parameter ε → 0, we derived limit two-scale models of
the unilateral contact in porous structures with disconnected and connected porosity. Below
we present the variational formulations of the contact problems for heterogeneous structures
with disconnected, or connected pores. An open bounded domain Ω ⊂ IRd, with the dimension
d = 2, 3, is constituted by the solid elastic skeleton Ωε

s and by the fractures (fissures) Ωε
f which
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Fig. 1. Representative cells Y for the two types of porous structures. Closed pores (left), connected pores
allowing for flow (right). Contact surfaces Γ+/−

c , subparts on the pore surface Γfs

are saturated by a viscous fluid, so that

Ω = Ωε
s ∪ Ωε

f ∪ Γε , Ωε
s ∩ Ωε

f = ∅ , Ωε
f ⊂ Ω , (1)

where Γε = Ωε
s ∩ Ωε

f is the interface; the contact is possible on Γε
c ⊂ Γε. The pores Ωε

f and
the skeleton are constituted as periodic lattices using domains Yf and Ys, respectively, where
Y = Ys ∪ Yf ∪ Γ is the representative unit cell.

2.1 Disconnected pores – static problems

The problem is described by a variational inequality governing the displacements uε and pore
pressure pε which is defined by constants in each closed pore Ωk,ε ⊂ Ωε

f . The following sets are
employed:

kinematic constraint: Kε = {v ∈ H1(Ωε
s)| v = 0 on ∂uΩε

s , g
ε
c(v) ≤ 0 on Γε

c} ,
admissible pressure field: Qε = {q ∈ L2(Ω)| q is constant in each Ωk,ε , k ∈ Iεf} ,

where gεc is the contact gap function. The variational formulation reads: Find uε ∈ Kε and the
pressure pε ∈ Qε such that (given volume forces f ε)
∫

Ωε
s

IDe(uε) : e(vε − uε) +

∫

∂Ωε
f

pεn[s] · (vε − uε) ≥
∫

Ωε
s

f ε · (vε − uε) , ∀vε ∈ Kε ,

∫

∂Ωε
f

qεuε · n[s] − γ
∫

Ωε
f

pεqε = 0 ∀qε ∈ Qε ,

(2)

where e(v) = (eij(v)) is the small strain tensor, γ is the fluid compressibility, and ID = (Dijkl)
is the elasticity. n[s] designates the unit normal vector outward to Ωε

s.

2.2 Quasistatic flow in collapsible connected pores

We consider the Stokes slow flow of an incompressible fluid in collapsible pores Ω̃ε
f of a de-

formable porous structure. While the solid skeleton small deformations are described in the
fixed (initial) configuration Ωε

s, the flow in the deformed pores Ω̃ε
f (uε),

Ω̃ε
f (uε) = {z ∈ R3|z = x + uε(x), x ∈ Ωε

f} , (3)
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must be respected to comply with the unilateral contact on Γε
c. The variational formulation

reads, as follows: Find (uε, pε,wε) ∈ Kε × L2(Ω̃ε
f )×W (Ω̃ε

f ) satisfying

aεΩ(uε, vε − uε) + Iε(σε
f , v

ε − uε) ≥
∫

Ωε
s

f ε · (vε − uε) , ∀vε ∈ Kε ,

ε2

∫

Ω̃ε
f

µ̄∇wε · ∇ϑε −
∫

Ω̃ε
f

(∇pε − f ε) · ϑε = 0 , ∀ϑε ∈ W (Ω̃ε
f ) ,

∇ · wε = 0 a. e. in Ω̃ε
f ,

(4)

where aεΩ(, ) is the elastic bilinear form and the interaction integral is established using the stress
in fluid σε

f = −pεI + ε22µ̄e(wε),

aεΩ(u, v) =

∫

Ωε
s

IDεe(u) : e(v) , Iε(σε
f , v

ε) =

∫

Γε
fs

n[s] · σε
f · vε . (5)

3. Homogenized porous medium with self-contact at pore level
For the structures with fluid saturated disconnected pores, the homogenized limit problem at-
tains the same form as the one derived for the structures without fluid (empty pores), although
the effective tangent stiffness modulus involved in the incremental formulation reflects the fluid
action. Henceforth, we focus on the model describing the quasistatic response of the homoge-
nized medium with connected pores. We denote by u0 and p0 the macroscopic displacement and
pressure fields, respectively, and by u1 and p1 the two scale counterparts of these fields, being
Y -periodic functions in the micro-variable y ∈ Y . These constitute the truncated asymptotic
expansions introduced using the unfolding operator Tε(), see [1], for x ∈ Ω and y ∈ Y ,

Tε(uε(x)) = u0(x) + εu1(x, y) + ε2(. . . ,

Tε(pε(x)) = p0(x) + εp1(x, y) + ε2(. . . ,

Tε(wε(x)) = ŵ(x, y) + ε(. . . , where ŵ(x, ·) = 0 in Ys .

Admissible two-scale displacements must satisfy u1 ∈ KY (∇ũ0) where the set KY is defined
using the gap function gYc (u1,∇u0) = [∇u0ŷ + u1 − ŷ]

Y
n ≤ 0 with ŷ ∈ Γc, where Γc ⊂ Γfs

is the contact surface, a part of the pore wall Γfs . The limit two-scale problem with quasistatic
flow is derived from Problem (3)-(4). It involves Local problems defined in Y for a.a. x ∈ Ω,
and the Global problem defined in Ω.

The Local problem describes the FSI problem with the unilateral contact and with the Stokes
flow in deformed pores Ỹf ,

∼
∫

Ys

aYS

(
u1 + Πijexij(u0), v− u1

)
+ p0 ∼

∫

Ys

∇y · (v− u1) ≥ 0 , ∀v ∈ KY (∇u0) ,

µ̄ ∼
∫

Ỹf

∇yŵ · ∇yv̂+ ∼
∫

Ỹ

(∇yp
1 +∇xp

0 − f f ) · v̂ = 0 , ∀v̂ ∈ H1
#0(Ỹf ) ,

∼
∫

Ỹf

q∇y · ŵ = 0 , ∀q ∈ L2(Ỹf ) ,

(6)

where ū = Πijexij(u0) is the displacement field in Ys produced by the homogeneous strain
ex(()u0) with Πij

k = δikyj and the Sobolev space H1
#0 contains Y -periodic functions with

zero traces on the pore wall Γfs . The elastic bilinear form aYS
(, ) is defined in analogy with
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the one introduced in (5), but using strains ey( ) and domain Ys in the periodic cell Y . The
Global problem is constituted by the static equilibrium and by the Darcy flow involving the
permeability K̃, thus,

∫

Ω

K̃(∇xp
0 − f f ) · ∇q = 0 ,∀q ∈ Q0(Ω) ,

∫

Ω

aYS

(
u1 + Πijexij(u0), ṽ(v0) + Πijexij(v0)

)

−
∫

Ω

p0

(
φf∇x · v0− ∼

∫

s

∇y · ṽ(v0)

)
=

∫

Ω

f̄ · v0 , ∀v0 ∈ U0(Ω) ,

(7)

whereby the test displacement field ṽ(v0) must satisfy gYc (ṽ,∇v0) = 0 on the actual contact set
Γ∗ defined a.e. in Ω.

The permeability tensor K̃ depends on the deformation by virtue of the deformed pores Ỹf
in the local reference cell Y (x). A regularization is considered to prevent a complete closing
of the pore at the vicinity of the active contact, i.e. where gYc = 0. This enables to preserve
the well posedness of the local flow problem (6)2,3 and, by the consequence, to rely on a strict
posive definiteness of K̃, though possibly very small. The permeability dependence on the
deformation of Yf is treated approximately using the sensitivity analysis approach [6], thus
K̃ ≈ K0 + δK = ∂pKδp0 +∂eK : ex(δu0) at x ∈ Ω. The two-scale algorithm proposed in [5] can
be adapted. The macroscopic increments (δu0, δp0) driven by the out of balance are computed
with the “fixed sliding contact” due to active contact sets (local true contact surfaces identified),
which modifies the effective macroscopic tangent stiffness.
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Analytical and numerical methods for modelling of acoustic
streaming in homogenized rigid porous structures
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1. Introduction
In the paper, we recall the classical perturbation approach which enables to linearize the Navier-
Stokes (N-S) equations governing the barotropic viscous fluid dynamics in pores in a rigid peri-
odic structure. The obtained first and second order sub-problems are treated by the asymptotic
homogenization to derive the macroscopic model of the porous medium describing the acoustic
streaming (AS) phenomenon.

2. Successive approximations of the Navier-Stokes equations
The Acoustic Streaming (AS) appears due to inhomogeneities in viscous flow due to non-zero
divergence of the Reynolds stress (due to the kinetic energy of the velocity fluctuations), or
due to vibrating fluid-solid interface. It is observed at fluid boundary layers as the Rayleigh
streaming due thermal and viscous phenomena, or in the bulk fluid as the high-frequency Eckart
streaming.

To distinguish the phenomenon of the AS, pursuing the standard approach of the pertur-
bation analysis, see [4], cf. [3], we consider the following approximation of the flow field ex-
pressed in terms of different order with respect to the small parameter α ≈ v0/c0, where c0 is
the reference sound speed and v0 is a characteristic flow velocity, v0 � c0. The fluid velocity,
pressure, and density denoted by vf , pf and ρf are represented by expansions

vf = αv1 + α2v2 + . . . ,

pf = p0 + αp1 + α2p2 + . . . ,

ρf = ρ0 + αρ1 + α2ρ2 + . . . ,

(1)

where p0, ρ0 are positive constants and ak denotes k-th order in α approximation of the quantity
a. Moreover, we assume that ak quantity is T -periodic in time, such that the time average of the
time derivative vanishes, ∂ta = 0. Using (1) substituted in the N-S equations, the 1st and 2nd
order problems with respect to α can be distinguished. At the first order, o(α1),

∂

∂t
ρ1 + ρ0∇ · v1 = 0 ,

ρ0
∂

∂t
v1 +∇p1 = µ∇2v1 + (µ/3 + η)∇(∇ · v1) ,

p1 = c20ρ1 ,

(2)
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Using the time average over period T of the second order terms, o(α2), we get
∂

∂t
ρ̄2 + ρ0∇ · v̄2 = −∇ · (ρ1v1) ,

ρ0
∂

∂t
v̄2 +∇p̄2 − µ∇2v̄2 + (µ/3 + η)∇(∇ · v̄2) = −ρ0

(
(v1 · ∇)v1 + v1(∇ · v1)

)
,

p̄2 = c20ρ̄2 + c0c
′
0(ρ1)

2 .

(3)

The right hand side terms in (3) defined by the time average of the acoustic T -periodic fluc-
tuations v1, i.e. the divergence of the Reynolds stress, present the driving force for the AS
phenomenon described by v̄2, the time average of the 2nd order velocity field. Different treat-
ment allowing for the acoustic modulation due to multiple time scales, thus, respecting the fast
and slow dynamics, was considered in [1].

3. AS in the homogenized medium
We consider the system (2) governing the acoustic waves in the fluid saturating periodic scaf-
folds represented by the fluid part Yf of the periodic unit cell, Yf ⊂]0, 1[2. The asymptotic
homogenization yields the macroscopic model which presents the Darcy flow. In the frequency
domain, amplitudes of the acoustic pressure waves

∼
p01 satisfying

iω
φf

c20 ∼
p01 −∇x · ( ∼K∇x

∼
p01) = 0 , (4)

where ∼K(iω) is the dynamic permeability and φf is the porosity. Since the associated velocity
v1(x, y) appears to be incompressible at the microscale, i.e. ∇y · v1 = 0, the acoustic stream-
ing force involved in the 2nd order system (3) is given by v1(∇ · v1). Homogenization of (3)
leads to a flow model describing the acoustic streaming phenomenon. The macroscopic flow is
described by solutions of

−K : ∇x ⊗∇xp
0
2 = ∇x · S(p01, ω) , W2 = −K∇xp

0
2 − S(p01, ω) , (5)

where the “steady” permeability K = ∼K(iω = 0) is given by ∼K obtained in the 1st order system
homogenization, and S(p01(x), ω) depends on the streaming force v1(∇ · v1) expressed using p01.

4. Example
To illustrate the acoustic streaming effect, we consider harmonic pressure waves in a 1D macro-
scopic domain Ω =]0, 1[. The microstructure is generated as a periodic lattice by representative
cell Y = Yf ∪ Y s whereby the solid obstacle is non-symmetric, see Fig. 3For boundary con-
ditions

∼
p0
1
(x = 0) = 0 and (

∼
p0
1
)′(x = 1) = 0, in Fig. 1 we display the analytic solution of (4)

which is expressed in terms of Fourier series, such that

∼
p0
1

= p̄

(
1 +

∑

k

Ak sin

(
(2k + 1)π

2

x

L

))
, p01(x, t) = <{

∼
p0
1
(x) exp(iωt)} , (6)

where Ak are the Fourier coefficients. The real response p01 is needed to define the acoustic
streaming vector S involved in (5). The second order macroscopic pressure distribution p̄02
is shown in Fig.2. Since no outflow condition at x = 1 is considered, the macro-streaming
vanishes W2 = 0 in the whole of Ω, see (5). Nevertheless, the micro-streaming v0

2(x,y) is
not zero; the permanent microscopic flow in the fluid domain Yf is shown in Fig. 3. Different
boundary conditions enable for the macroscopic acoustic jet, in general.
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Fig. 1. The space-time distribution of the first
order acoustic pressure wave p01(x, t)

Fig. 2. The distribution of p02(x)

Fig. 3. Reconstruction of the harmonic velocity v1 at time t = 0 (left) and permanent v2 (right) in the
representative volume Yf located at the macroscopic position x = 0 of the periodic scaffolds
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Analysis of production parameters of automotive components by 

injection moulding technology  
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Faculty of Mechanical Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia 

The article will present selected requirements necessary for the manufacturability of a plastic 

component by injection molding technology. With the help of simulation tools, 

manufacturability will be assessed on the selected plastic component of the car seat. The 

simulation of the injection molding process will be analyzed using Autodesk Moldflow 

software. The analysis will take into account the conditions of production of the polymer part 

by injection with regard to the requirements for its functionality defined by the production 

drawing. 

If we take a closer look at the technology of plastic injection molding, we will discover 

significant advantages such as automation, reproducibility, precision and low production costs. 

This technology also has its limitations and specifics, which should be paid attention to. Today, 

we have simulation tools available that help either directly in product development or tool 

design [1]. By simulating flow, we can predict the properties of the behavior of the hot-melt in 

the mold and assume the influence of important parameters such as the choice of the location 

of the injection point or the deformation . 

The component in Fig. 1 (Lockshift) is part of the locking mechanism, which, after pressing 

the button, allows the movement of the headrest in the vertical direction.  

When choosing the material, the strength limit and its impact strength are taken into account. 

A disproportionate increase in wall thickness is not recommended, as it leads to increased 

weight, material usage and lengthening of the production cycle due to the extension of the 

cooling time. 

 

Fig. 1. Headrest (left) and Lockshift (right) 

Polymers have become popular due to their properties. They are relatively cheap, have a low 

specific density and often good electrical insulating properties. They can be combined with 

other materials to create composites [4]. POM (polyoxymethylene) material was chosen for 

Lockshift. Emissions of volatile substances are a disadvantage of this material, as it is produced 

by polymerization of formaldehyde and this is excreted in small quantities during the life cycle. 

Thanks to its other positive properties (very good sliding and abrasion properties, it is stable in 

shape and size and has a relatively high strength), it is difficult to replace it. 

129



The injection point is the connection between the inlet system and the molding. Its cross-

section should be as small as possible, as it is visible on the molding, but it must also be large 

enough so that the values of shear stress and pressure loss are not exceeded. The cross-section 

and position of the injection point have a significant effect on the injection process and are a 

very common cause of injection problems. Editing it already in its finished form is often 

difficult and expensive. Therefore, every designer must choose the concept of the inlet system 

very carefully when designing the part and the mold. 

The designer of the molding should already think about the chosen concept of the mold and, 

therefore, in which direction the molding will be unmolded. The strength of the machine's 

closing unit depends on the projection of the molding surface in the main direction and the 

material used, as the injection pressure is projected onto the molding surface. Injection 

pressures depend on the material and the nature of the product [5]. The simulation program can 

predict the required closing force based on the viscosity, flow index and shape of the model. 

When the necessary closing force is estimated, the parts manufacturer can calculate how strong 

an aggregate will be needed for production. Subsequently, it is necessary to design the part with 

regard to the release angles. The Lockshift part does not have any elements with negative 

angles. 

The material and its parameters are defined in the simulation program libraries. The 

simulation program Autodesk Moldflow perform the analysis by using the finite element 

method (FEM). The simulation results presented in Fig. 2 show that the injection point is not 

optimally positioned, as the injection time is too long (5.6 s) and the melt junction point is in 

the weak point of the component. The pressure during switching is 1190 bar (119.2 MPa). 

 

 
 

Fig. 2. Flow rate with the originally positioned injection point 

From the filling simulation in Fig. 2 and Fig. 3, it takes 5.66 s to fill the part and the switching 

pressure is approximately 1120 bar. It can be seen from the simulation that the melt flow is not 

optimal (Fig. 2). The melt has to unnecessarily pass narrow places in order to subsequently 

reach the open space and also joins in the narrow place. Here it creates a joint line that has lower 

strength and may break during dynamic tests. Our effort is to make the connection line as long 

as possible. For a part that weights 21 g, the filling time is relatively long, which is due to how 

the part is complicated to fill. The filling pressure for POM material should be in the range of 

Weak Point 
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1000 to 1500 bar [2, 3]. The currently predicted injection pressure is within this range, but if 

the filling point were better chosen, the pressure could be lower. Higher injection pressures 

mean higher shear stress for the material. 

For the reasons discussed above, we changed the location of the injection point and subjected 

the component to a new analysis in Moldflow software. 

From the visualization of filling the cavity with the new injection point in Fig. 4, it is clearly 

seen that the filling time has been reduced to about 2.8 s. The fusion joint has moved to a more 

robust part of the part and thus the risk of cracking under dynamic stress has been reduced. 

 
 

Fig. 3. Mold pressure 

 

 

 

 
Fig. 4. Flow rate with repositioned injection point 

Another improvement is the injection pressure dropped significantly, down to a value of 

573 bar. This represents a significantly reduced stress on the material and the reduction in 

injection time will represent a shortening of the injection cycle by almost 3 seconds. If we 

further compare the visualization of the deformation from Fig. 5 before and Fig. 6 after 

adjusting the location of the injection point, we can see that here too we have achieved a 

significant improvement. 
  

Weak Point 
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Fig. 5. Deformation with originally positioned injection point 

 

 
Fig. 6. Deformation after the reposition of injection point 
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Vibration plays an important role in many engineering applications and often needs to be 

eliminated. These problems occur with robots, machine tools, with turbine rotors for different 

applications, in precise instruments such as electron microscopes, deep space telescopes, 

particle detectors, etc. A novel methodology for vibration absorption of mechanical structures 

is proposed utilizing tuneable active absorbers as key elements. The absorber(s) are considered 

to be located in a certain distance from the point on the structure, where vibrations are to be 

suppressed. This original concept, referred to as the “non-collocated vibration absorption” has 

a high potential towards applications, where the absorber cannot be placed in the conventional 

“collocated” manner due to various technological constraints. 

The idea of passive vibration absorber connected to the primary mechanical structure to 

suppress its vibrations is known and patented many decades. The active versions of vibration 

absorption concept however significantly improve its efficiency. There is a lot of ways of 

control algorithm design. One specific alternative is a Delayed Resonator (DR) approach [1], 

which has recently been generalized for simple unidirectional flexible mechanical structures 

also to non-collocated absorption of vibrations [2]. 

Realization of non-collocated absorption for a general spatial structures is neither 

straightforward nor simple. Reduced modal description with consideration of the static residues 

[3] for neglected higher eigenfrequencies/eigenmodes seems to be suitable form of model. The 

original state space model is described by matrices in form (1), part of the states corresponding 

to low frequencies “1” is preserved, whereas part “2” is reduced and replaced by residues. Using 

modal state variables, the whole state matrix is simplified (2), and residues affect only the 

feedthrough matrix (3). The matrix 𝑨22 is tridiagonal and consequently inversion 𝑨22
−1 is also 

tridiagonal [3] 

11 12 1

21 22 2

1 2

origSS

 
 


 
  

A A B

A A B

C C D

 ,                                                                       (1) 

 

11 12

21 22

0
( ),

2

i

mi mi

i di i

diag
b

  
     

     

A A
A A A

A A

 ,                                                (2) 

 

11 1

mod 1

1 2 22 2

spaSS


 
  

 

A B

C D C A B
.                                                                   (3) 

As the significant extension of previous 2D-DR research [4], [5] the aim of the current 

investigation is 6 DOF spatial absorber on the flexible spatial multi-DOF structure. The 

absorber is proposed as compact three-dimensional active device with six identical 

eigenfrequencies, which could be based e.g. on Stewart platform equipped with springs and 

voice-coil actuators in each leg (Fig. 1a). The cubic architecture is close to the uni-frequency 
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ideal. Subsequently, applying delayed position feedbacks from voice-coil length encoder 

sensors, the 3D-6 DOF absorber is turned to the ideal absorber at the given frequency similarly 

to planar case in [4] and [5]. Basic configuration, with elastically mounted rigid 6 DOF primary 

platform (Fig. 1b), is farther extended to the above mentioned general flexible spatial multi-

DOF primary structure. The example of spatial uni-frequency absorber functionality in x, y, z 

directions on multi-DOF flexible structure is shown in Fig. 2.  

                            
 

 a) absorber mechanical scheme  b) absorber mounted on primary platform 

Fig. 1. Spatial 6 DOF active absorber 

 
Fig. 2. Example of absorber functionality in x, y, z directions on flexible structure 
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1. Introduction 

Only a relatively small number of projects is focused on tensegrity structures undergoing large 

structural deformations. The reason is a highly nonlinear dynamic behaviour complicating the 

analysis in many ways. In robotic locomotion, for example, the main task of the robot is to 

transport oneself relative to a global reference frame in terms of an untethered movement. The 

main advantage of using the tensegrity structures for locomotion is their robustness to the 

outside environment in terms of damage tolerance and the diffusive force distribution, which 

allows the structure to be less susceptible to failure when subjected to an unpredictable external 

disturbance, especially during highly dynamic motion [1]. During this highly dynamic 

movement, vibrations occur, and they must be eliminated in order to achieve precise movement. 

This aim applies for robotic manipulation as well. 

There are three main types of vibration control: passive, semi-active and active. The passive 

type, still being the most conventional of the three, is based on inherent properties of the 

structure itself [3]. The dampers have inherent force-velocity characteristics, imprinted in them 

during the manufacturing process, and these stay the same if we neglect the temperature 

changes and the mechanical wear over time. Active and semi-active methods have shown 

themselves to be more universal, for they can be deliberately adjusted in real time to produce a 

desired response. Semi-active devices can only absorb energy from the interacting system, 

hence cannot destabilize it. The passive and semi-active methods essentially rely on their 

composing material and precision components. Active damping, on the other hand, offers 

an increased performance in a given control bandwidth while reducing the application cost and 

is a promising candidate for applications in tensegrity robotics [2]. 

2. Optimal placement of high-authority actuators 

The optimal placement of actuators plays the key role especially for large spatial movements 

of the structure. The optimization objective is to find a suitable actuation vector c for a given 

set of contraction responses. Due to the nature of cables, the translational DOFs can be actuated 

only in one direction – the pulling direction. Thus, it is necessary to ensure the motion of the 

end-effector (task-space) DOFs in both directions. For this purpose, we rectify the response 

vectors in positive x+ and negative x- senses, respectively. The objective is to maximize the 

balanced sensitivity function 𝑆, which is a weighted sum of sensitivity magnitudes for all task-

space DOFs (1) 

 𝑆 = 4 ∑ 𝑤𝑖𝑆𝑖 = 𝒄𝑻𝑸𝒄;     𝑸 = ∑ 𝒘_𝒊(|𝒙𝒊𝒙𝒊
𝑻| − 𝒙𝒊𝒙𝒊

𝑻) 
𝒏𝒕
𝒊=𝟏

𝑛𝑡
𝑖=1 . (1) 

The optimal actuator placement vector for a given number of actuators 𝑛𝑎 is then 

 𝑐𝑜𝑝𝑡 = arg max(𝒄𝑻𝑸𝒄) ;    ||𝒄|| 1 = 𝑛𝑎 . (2) 
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Fig. 1. Sensor placement for: a) 3 sensors, b) 6 sensors, c) modal shapes 

3. Optimal placement of low-authority sensors and actuators 

In active vibration suppression, a mere focus on the control algorithm with neglected 

consideration of a suitable sensor and actuator placement results in a sub-optimal solution. As 

illustrated on the example (Figs. 1a, b) of a simply supported beam in Fig. 1c, the collocated 

actuator/sensor pair is placed optimally for the first mode. However, the second mode, and all 

even modes for that matter, are uncontrollable and unobservable by the actuator, resulting in 

poorly damped vibrations of these modes. For this reason, it is of a substantial importance to 

address this issue early in the design process, so that the desired control performance is 

achieved. An optimal placement of sensors and actuators for a generic tensegrity structure is 

proposed. The optimization algorithm is based on the derived finite-element dynamic model. 

For the actuator placement, a suitable objective is the minimization of control energy 

required to bring the system eigenmodes to the desired states after a certain time 𝑡. This can be 

expressed by the quadratic form 

 𝐽𝑐 = ∫ 𝒖𝑻(𝜏)𝒖
𝑡

0
(𝜏)𝑑𝑡 . (3) 

For the placement of sensors, we seek an arrangement that maximizes the output energy of the 

system in the form 

 𝐽𝑜 = ∫ 𝒚𝑻(𝜏)𝒚
∞

0
(𝜏)𝑑𝑡 (4) 

for the desired modes. To demonstrate this algorithm, a specific example of tensegrity structure 

was developed (Figs. 1a, b). It is a tensegrity tower with two stages of second order, which 

implies that two struts are connected at most within the structure. In our case the struts are 

connected in pairs with spherical joints between the stages. The nodes are fully connected with 

cables. We can divide the cables in three groups based on their orientation: vertical, horizontal, 

and diagonal. 

Figs. 1a, b shows the geometrical model of the tower which was used in FEM modelling 

and the following optimization. The placement of sensors and actuators is considered in cables 

only. The model is has 18 DOF in total including the strut axial deformation and excluding the 

strut parasitic rotations. This consequently results in 18 modelled vibrational modes. The two 

objective functions used for optimization are the degrees of controllability and observability. 

Maximizing these scalar functions by genetic algorithm yields following results: quantitative 

and qualitative. 

  

b) a) c) 
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Fig. 2. Best controllability/observability plot relative to a single actuator for each possible number of actuators. 

It is displayed for three different modes 
 

In Fig. 2a a DEGC (degree of controllability) for varying number of actuators is shown. It 

is displayed for three modes: first, second and the least controllable. Because DEGC is 

computed relative to the maximum value of controllability across all placements, the maximum 

value will be unity. In Fig. 2b the controllability relative to a single actuator is displayed. This 

plot has a significance for the decision-making purposes, where it serves as a useful tool to 

determine the used number of actuators for the application. 

Qualitative results correspond to the best possible placement of sensors (actuators) for every 

number 𝑛𝑠 (𝑛𝑎) of them starting with one and ending with the total number of cables (when 

there are sensors/actuators present in each cable). These results are visualized in Fig. 2a and 

Fig. 2b. 

4. Active vibration control synthesis and simulation 

A two-stage tensegrity manipulator of type 1, which means that no two struts are connected, 

was constructed as shown in Fig. 3a. This demonstrator consists of two S3 tensegrity simplexes 

stacked on top of each other while being surrounded by two platforms – a bottom and a top 

platform. The bottom platform is considered fixed to the world frame and the top platform 

supports the end-effector, which is not shown in the figure. The platforms are attached to the 

struts by universal joints, eliminating parasitic rotations, otherwise present in spherical joints.  

For simulation, control law synthesis, and testing, a specific bending movement pattern was 

chosen as shown in Fig. 3b. The figure shows the task-space coordinates of the top platform 

along the chosen trajectory performed by the manipulator. The control of large displacements 

of the manipulator was produced using the computed torque control (CTC) on which the IFF 

active vibration control was later superimposed. Fig. 3b displays the deviation of the real 

trajectory from the desired trajectory for the case when only CTC control is used. For practical 

testing of active vibration suppression, the disturbance signals are injected into the nonlinear 

simulation model. These signals are modelled in two ways: band-limited white noise injected 

to both the top and the bottom platform reference frames; and force impulse applied only to the 

top frame. The vibrational response of the structure is shown in Fig. 3c. It is clear that the 

response on the disturbance excitations has been attenuated for both the translational and the 

rotational degrees of freedom. 
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Fig. 3. a) The physical demonstrator of tensegrity structure, b) displacement and rotation time plot of the top 

platform and a CTC task-space displacement error plot along the trajectory without disturbances, c) task-space 

displacement and velocity error with white noise disturbance 

5. Conclusion 

A complex simulation of the model is performed both in open-loop and closed-loop, both in 

presence and absence of external disturbances of distinct types. It is shown that the implemented 

method of active vibration suppression using collocated decentralized integral force feedback 

is highly effective for tensegrity structures. The suppression was successful for both cases of 

translational task-space vibrations, but to the lesser extent for the rotational vibrations, where 

the substantial damping is recorded for the former case only. This finding results in a realization 

that the pointing performance of controlled tensegrity manipulators needs to be addressed more 

deeply when kinematic excitations of the base frame are present [4]. 

Acknowledgements 

The research is supported by the Czech Science Foundation project No GA20-21893S  

“Mechatronic Tensegrities for energy efficient light robots “. 

References 

[1] Iscen, A., Agogino, A., SunSpiral, V., Tumer, K., Learning to control complex tensegrity robots, 

in Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, 2013. 

[2] Shah, D. S., Booth, J. W., Baines, R. L., et al., Tensegrity robotics, Soft robotics, 2021. 

[3] Skelton, R. E., Adhikari, R., Pinaud, J.-P., et al., An introduction to the mechanics of tensegrity structures, 

in Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, 2001. 

[4] Šindel, T., Tensegrity mechanisms with active vibration suppression, master thesis, CTU in Prague, 2022. 

138
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1. Introduction 

Prolonged sitting is a source of discomfort. We consider the option of changing seat cushion 

stiffness as the next level of seat customization, which can potentially increase sitting comfort. 

Modification of the cushion stiffness results in the change of distribution of contact pressure 

between the human body and the seat. To assess the effects of various seat designs on the con-

tact pressure distribution, we decided to build a finite element model. 

2. FEM model 

To create the FEM model of the seat (see Fig. 1), we used the 3D scanning of the real seat to 

get the geometric data of the cushion since we could not get the original CAD data. In order to 

create a volume finite element mesh of the seat cushion, we first generated the surface tria-quad 

shell mesh with the target element size of 5 mm. To generate volume mesh, we used the “HEXA 

POLY“ function of the ANSA pre-processor. Which creates hexahedral mesh inside the volume 

and polyhedral mesh closer to the surface – see Fig.3.We kept the surface shell mesh in the 

model for the latter definition of the cushion-human contact and surface pressure recovery. To 

simplify the model, we did not model the backrest. Thus, we applied a boundary condition to 

a human body model instead. 

  

Fig. 1. automotive seat with variable stiffness Fig. 2. TOYOTA AM50 5.03 occupant model 

139



To identify the material model parameters of the cushion polyurethane foam, we provided 

laboratory measurements with the foam specimens sized 100x100x50 mm. We exposed 

the specimen to compressive loading up to relative deformation of 60%. We chose MSC.Marc 

built-in material model of type “foam,” which is a modification of the Ogden model for com-

pressible materials – for the details, see [1]. 

Next, we implemented the model of the pneumatic element according to the patent [2] 

(closely described in [3]) into the seat FEM model. The used model of the human body is based 

on the THUMS human body model AM50 by TOYOTA [4] (see Fig. 2). The THUMS model 

was initially intended for vehicle collision simulations, but its FEM mesh is coarse enough to 

keep the model simple and fine enough to maintain its fidelity. Moreover, it is modeled in the 

sitting position. To shorten the computational time, we used only part of the body, and the rest 

we replaced with boundary conditions. 

3. Conclusion 

We simulated the model without applying internal pressure to the pneumatic element – such 

a case we consider as it was the seat simulation without a pneumatic element. Although we 

collected experimental data on the pressure distributions of several volunteers seated in the real 

seat, a comparison of simulated human-seat contact pressure distribution to the experiments is 

yet to be done. 

 

Fig. 3. volume mesh of the seat cushion with hexahedral elements insideand polyhedral close to the surface 
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Vibration analysis of a vertical rotor immersed in fluid
at extreme operating temperatures
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Contemporary fusion reactors, such as the International Thermonuclear Experimental Reactor
(ITER), require deuterium and tritium to fuel the fusion reaction. Whereas deuterium can be
easily extracted from seawater, tritium is very rare. Fortunately, a tokamak can produce tritium
when neutrons escaping the plasma collide with lithium in its inner wall. This procedure is
called tritium breeding. The search for the superior tritium breeding material is still ongoing,
although it started more than 40 years ago. One of the potential candidates evaluated during the
ITER project is lead-lithium (PbLi) eutectic material [5], a homogenous mixture of Pb and Li
that solidifies at a single temperature. The mixture is produced in a saturator that continuously
mixes involved substances under laminar flow conditions.

The saturator can be constructed as a vertical rotor with several thin discs, which is placed
in a pressure vessel. The clearance between the saturator and vessel is occupied by PbLi, which
is mixed as it flows through the vessel thanks to the saturator rotation. The temperature of the
PbLi mixture reaches 550 ◦C, rendering the usage of rolling element bearings or petroleum-
based lubricants in journal bearings impossible. However, the dynamic viscosity of PbLi is
only 1.28 mPa s at 550 ◦C [5], which is suitable for providing hydrodynamic lubrication at low
specific loads. On the other hand, the density of PbLi at 550 ◦C is ca. 9300 kg m−3 resulting in
significant buoyancy and inertia forces acting on the saturator.

This paper explores the potential of using PbLi as a lubricant in the journal bearings of the
saturator. PbLi has similar lubricating properties to water due to its low dynamic viscosity,
which raises concerns regarding possible whirl/whip instability [2]. Moreover, the high tem-
perature and density of PbLi influence the mechanical properties of the rotor and can cause
problems in a thrust bearing due to centrifugal forces. As noted by Nishimura et al. [2], the
influence of the pressure vessel (stator) on the rotor dynamics is also critical because its first
natural frequency is close to the nominal speed of the saturator.

Fig. 1 shows a saturator assembly consisting of three flexible bodies (main rotor, drive shaft
and stator), a rigid drive and couplings including a radial journal bearing, a conical bearing
supporting the main rotor radially and axially, three deep groove ball bearings and two torsional
couplings. Since the assembly contains several flexible bodies and nonlinear couplings, its
motion is described utilising the Newton-Euler equations for multi-body dynamics. The exact
form of these equations for body B reads [3]

M v̇ − prb (s, ṡ) = pgyr (s) + f j(s, w) + f e(s)−D q̇ −K q, (1)
ẋB = vB, (2)
q̇ = v, (3)
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Fig. 1. Scheme of the computational model of the saturator

θTBθB = 1, (4)

2S (θB) θ̇B = ΩB, (5)
r (q) = 0, (6)

where xB ∈ R3×1 and θB ∈ R4×1 hold the position of a body reference and its orientation
given by four Euler parameters. q ∈ R6N×1 contains all elastic coordinates defined w.r.t. the
body reference with N being a number of nodes that describe the body configuration. State
vector s =

(
xTB, θ

T
B, ẋ

T
B, ΩT

B, q
T, q̇T

)T contains both global and elastic coordinates and their
respective time derivatives, and vector w consists of state vectors of all bodies coupled to B.
M , D, K ∈ R6N×6N are constant mass, damping and stiffness matrices, respectively. Vectors
prb, pgyr, f j, f e ∈ R6N×1 incorporate forces resulting from inertia and gyroscopic effects,
joint deformations and predefined external loading, respectively. An exact form of vectors
prb, pgyr is derived in [3] and the form of vector f j depends on governing equations of the
coupling forces.

Eqs. (2) and (3) are substitutions required for a numerical integration. Eqs. (4) and (5)
describe relations between the Euler parameters, body orientation and angular speed [3]. The
system of Eqs. (1)–(5) does not necessarily have a unique solution. Therefore, Eq. (6), which
ensures a unique separation of the global and flexible coordinates, has to be attached [3].

Hydrodynamic forces acting in the journal bearings are evaluated employing the modified
Reynolds equation complemented with the JFO cavitation model. Governing equations and
a method for their solution based on finite volume and multi-grid methods are introduced in
[4], and boundary conditions are shown in Fig. 2. Elastic forces acting in the rolling element
bearings are estimated using the Hertzian theory. The dynamic characteristics of the stator
are computed using a detailed finite element model, which is capable of evaluating frequency
response functions (FRFs) between individual bearing stations and the ground. The multi-body
model incorporates the FRFs that contain the first two natural frequencies, which correspond to
first-order bending mode shapes.

The influence of PbLi on flexural vibrations of the main rotor is implemented in accordance
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with [1]. Assuming that inertial terms dominate over viscosity terms, the resulting forcing is

Fx,i = −meff,i

(
ẍi − 2ωeff,i ż + ω2

eff,i xi
)
, (7)

Fz,i = −meff,i

(
z̈i − 2ωeff ẋi + ω2

eff,i zi
)
, (8)

where x, z are horizontal displacements of the i-th node, meff,i and ωeff,i are the effective mass
and angular speed of PbLi in the vicinity of the i-th node.

Due to the inherent nonlinearity, the system of Eqs. (1)–(6) is solved numerically employing
a backward differentiation formula with the variable time step ∆t ∈ 〈5 ·10−6, 5 ·10−4〉 s. The
response is simulated in the interval t ∈ 〈0, 3〉 s.

Fig. 3 shows hydrodynamic pressure fields in the conical bearing. Apparently, only the
upper half of the bearing is active due to the buoyancy force. The hydrodynamic pressure in the
lower half is determined only by the boundary conditions. Fig. 3 also reveals that the pressure
field is asymmetric. The asymmetry generates a pressure gradient sufficient for hydrodynamic
lubrication and is caused by the relative misalignment of the main rotor to the stator.

Fig. 3. Results – Hydrodynamic pressure fields in the conical bearing assuming axial (half) clearance
ca = 64 µm and speed n = 600 rpm
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Fig. 4. Results – waterfall plot of absolute vibrations at the radial journal bearing

Fig. 4 depicts a waterfall plot of absolute vibrations of the stator at the radial journal bear-
ing. The vibrations are dominated by the synchronous component caused by rotating unbalance
up to 600 rpm. The stator experiences asynchronous vibration related to its natural frequency
at speeds from 650 rpm. This asynchronous vibration is surprisingly associated with the con-
ical bearing, which is very lightly loaded because the buoyancy force is almost equal to the
gravitational force. The vibration can be attenuated by introducing an additional thrust load.

In conclusion, PbLi is suitable for journal-bearing lubrication, provided the sliding velocity
is low to moderate. The low viscosity of PbLi guarantees acceptable power losses, but its high
density can be problematic at higher sliding velocities due to innegligible inertial forces.
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Problematics of aerodynamic damping calculation
from measured data of 5-blade cascade
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Institute of Thermomechanics of the CAS, v. v. i., Dolejškova 1402/5, 182 00 Praha 8, Czech Republic

Aerodynamic damping as a function of inter-blade phase angle (IBPA), so called S-curve, is
crucial for assessment of aeroelastic stability of blade cascades, e.g. turbines, compressors, etc.
For constructing the S-curve, the motion-induced controlled flutter is introduced to the blades
of the cascade. As decribed in [2], two testing methods exist: aerodynamic influence coefficient
(AIC) approach and travelling wave mode (TWM) approach. In TWM approach, all blades in
a row oscillate with the same frequency and amplitude with various IBPAs. The response is
measured only on the reference blade. With this approach, several measurements with different
IPBAs are needed to construct the S-curve. On the other hand, AIC uses single oscillating
blade and principle of linear superimposition of aerodynamic influence responses measured on
all blades in a cascade. The result of one single measurement can be used for estimation of
aerodynamic damping for any IBPA.

In the past year a new 5-blade cascade with rotating symmetrical NACA 0010 profiles was
designed and built. The blades of the cascade were placed further apart and thus we are now able
to reach stall flutter. Also, the suspension of the blades and sensors were significantly improved.
Now, our goal is to evaluate S-curves using AIC approach for different flow conditions and
oscillation frequencies.

In AIC approach only the middle blade oscillates. Motion of the oscillating blade is mea-
sured by laser vibrometer; its moment and moment of two adjacent blades is measured by strain
gauges placed on the blade shafts. The aerodynamic moment generated by the flow and acting
on the oscillating blade, however, cannot be easily measured as the measured signal also con-
tains moment generated by inertia and damping of the blade. Two methods of extracting the
aerodynamic moment from the measured signal, subtraction and identification methods, were
used on the previous blade cascade and are described in [1].

Subtraction method subtracts the moment measured with oscillations without the flow from
the moment measured with the flow. The disadvantage of this method is that each measurement
must be repeated with and without the flow and its accuracy is limited to the cases where the
motion of the blade is not affected by the flow.

Identification method is based on identification of the blade inertia and damping from mea-
sured data without the flow and using those identified parameters to calculate structural moment
using measured motion and subtract it from the measured moment. The advantage over the
subtraction method is that only one measurement without the flow is needed and also it is not
sensitive to the disturbances in the motion caused by the flow.

Both of those methods, however, subtract a small aerodynamic moment caused by the damp-
ing of the air present around the blades in measurements without the flow. They would need to
be performed in the vacuum to overcome this issue.
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In the new cascade the blade attachment is made with as less damping as possible. With the
forced excitation, the only structural damping is caused by deformation of the blade and its shaft
and by friction in pin bearing. This structural damping is assumed to be lower then the damping
by surrounding air mentioned above. And since the S-curve is calculated from the work per
cycle and the inertia of the blade is not generating any work, it is reasonable to integrate the
work per cycle directly from the measured moment. Moreover, this direct method is the upper
boundary of the true result – no structural nor aerodynamic damping is subtracted, while the
two previous methods are the lower boundary – both aerodynamic damping from steady air and
the structural damping are subtracted.

Experiments were conducted on the cascade with angle of attack -10°, wind speed 25 m/s
and various oscillation frequencies. S-curves were evaluated using all three mentioned methods
and compared. Fig. 1 shows comparison of the methods for oscillation frequencies 10 and 40
Hz. In the case when the motion is not disturbed by the flow, subtraction and identification
methods should give the same results, as they do for 40 Hz in Fig. 1b. However, this is not true
for 10 Hz in Fig. 1a where the S-curve evaluated by subtraction method is shifted downwards
and is not correct. As it was mentioned above, the identification (or subtraction) method should
be a lower boundary of the true result and direct method the upper boundary. When we look
both on Fig. 1a and Fig. 1b, the shift between those two curves is negligible.

This brings us to a conclusion that with the new cascade it is possible to evaluate aero-
dynamic damping by directly integrating the measured moment to obtain work per cycle. By
doing so we can avoid errors caused by imprecise subtraction or identification.
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(a) Oscillation frequency 10 Hz
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(b) Oscillation frequency 40 Hz

Fig. 1. Comparison of S-curves evaluated by three different methods
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1. Introduction 

The acoustics of the vocal tract are involved in the creation of vowel and the timbre of the voice. 

Bioacoustics and the creation of the human voice is an intensively researched field. Acoustic 

analyses of vocal tracts investigate the influence of geometry on the character of the voice. This 

is based on work [1]. According to this work, the vocal cords generate pressure or velocity 

pulses (source voice) that are independent of the phonated voice. The vocal tract is a dynamic 

system that modulates the frequency spectrum of the source voice. The transmission function 

of the vocal tract between the vocal cords and the mouth determines the vowel and timbre of 

the voice. 

Vocal tract analyses are most often performed using the finite element method (FEM) or 

experimentally. Other methods are less used. The vocal tract is geometrically complicated. Its 

shape is characteristic. It is a channel of variable cross-section. Frequencies below 4kHz are 

important for the human voice. At these frequencies, mainly longitudinal waveforms and the 

simplest transverse waveforms are existed. A conventional FEM model must have a fine mesh 

to describe complex geometry. Such a model is suitable for analyses in a wide spectrum of 

frequencies. It is unnecessarily complex for the frequencies of the human voice. A coarser 

model would not describe the geometry well. In this work, a new element for FEM is developed. 

This element is suitable for modelling vocal tracts. It has a minimum of degrees of freedom and 

yet it can describe the geometry of the vocal tract well. This will make it possible to build 

numerically more efficient models that are similarly accurate as classic FEM models. 

2. Formulation acoustic for FEM 

The propagation of acoustic waves in the environment is described by the wave equation. A 

wave equation of the form with losses in the medium is assumed 

𝜕2𝑝′

𝜕𝑡2
+

𝑟

𝜌0

𝜕𝑝′

𝜕𝑡
= 𝑐0

2∆𝑝′. (1) 

The FEM uses a weak formulation of the partial differential equation problem [2]. Multiply the 

equation by the test function and integrate over the solved volume 

∫
 

𝑉

(𝛿𝑝′
𝜕2𝑝′

𝜕𝑡2
+ 𝛿𝑝′

𝑟

𝜌0

𝜕𝑝′

𝜕𝑡
) 𝑑𝑉 = ∫

 

𝑉

(𝛿𝑝′𝑐0
2∆𝑝′)𝑑𝑉 , (2) 

∫
 

𝑉

(𝛿𝑝′
𝜕2𝑝′

𝜕𝑡2
+ 𝛿𝑝′

𝑟

𝜌0

𝜕𝑝′

𝜕𝑡
+ 𝑐0

2(𝛻𝛿𝑝′)𝑇(𝛻𝑝′)) 𝑑𝑉 = ∫
 

𝜕𝑉

(𝑛𝑇𝑐0
2𝛿𝑝′𝛻𝑝′)𝑑𝑆 . (3) 

From the theory of potential flow, it is possible to determine the dependence between acoustic 

pressure and acoustic velocity 
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𝜌0

𝑑𝑣′

𝑑𝑡
= −𝛻𝑝′. (4) 

Then it applies 

∫
 

𝑉

(𝛿𝑝′
𝜕2𝑝′

𝜕𝑡2
+ 𝛿𝑝′

𝑟

𝜌0
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𝜕𝑡
+ 𝑐0
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𝜕𝑉
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2𝛿𝑝′𝜌0

𝑑𝑣′

𝑑𝑡
) 𝑑𝑆 . (5) 

Acoustic velocity is eliminated by using acoustic impedance 

𝑛𝑇𝑣′ =
𝑝′

𝑍
 , (6) 

∫
 

𝑉

(𝛿𝑝′
𝜕2𝑝′

𝜕𝑡2
+ 𝛿𝑝′

𝑟

𝜌0

𝜕𝑝′

𝜕𝑡
+ 𝑐0

2(𝛻𝛿𝑝′)𝑇(𝛻𝑝′)) 𝑑𝑉 = − ∫
 

𝜕𝑉

(𝑐0
2𝛿𝑝′

𝜌0

𝑍

𝑑𝑝′

𝑑𝑡
) 𝑑𝑆 . (7) 

The integration is over the entire volume (surface). Since integration is additive, it is possible 

to convert it to integration over individual elements and use shape functions 

𝑝′(𝑡, 𝑥, 𝑦, 𝑧) = 𝑁𝑒(𝑥, 𝑦, 𝑧)𝑃𝑒(𝑡) , (8) 

𝛿𝑝′(𝑡, 𝑥, 𝑦, 𝑧) = 𝛿𝑃𝑒
𝑇(𝑡)𝑁𝑒

𝑇(𝑥, 𝑦, 𝑧) . (9) 

The equation will take the form 

𝛿𝑃̂𝑒

𝑇
(∫

 

𝑉𝑒

(−𝑁𝑒
𝑇𝑁𝑒𝑃̈𝑒 + 𝑁𝑒

𝑇
𝑟

𝜌
0

𝑁𝑒𝑃̇𝑒 + 𝑐0
2(𝛻𝑁𝑒)𝑇(𝛻𝑁𝑒)𝑃𝑒) 𝑑𝑉 + ∫

 

𝜕𝑉𝑒

(𝑁𝑒
𝑇𝑐0

2𝜌
0

1

𝑍
𝑁𝑒𝑃̇𝑒) 𝑑𝑆) = 0 . (10) 

After dividing the equation by the square of the sound speed, it is possible to introduce the 

matrices defining the element 

𝑀𝑒 =
1

𝑐0
2 ∫

 

𝑉𝑒

(𝑁𝑒
𝑇𝑁𝑒)𝑑𝑉 , (11) 

𝐵𝑒 =
1

𝑐0
2𝜌0

∫
 

𝑉𝑒

(𝑟𝑁𝑒
𝑇𝑁𝑒)𝑑𝑉 + 𝜌0 ∫

 

𝜕𝑉𝑒

(𝑁𝑒
𝑇

1

𝑍
𝑁𝑒) 𝑑𝑆 , (12) 

𝐾𝑒 = ∫
 

𝑉𝑒

((𝛻𝑁𝑒)𝑇(𝛻𝑁𝑒))𝑑𝑉 . (13) 

The integral of one element turns into the form 

𝛿𝑃𝑒
𝑇(𝑀𝑒𝑃̈𝑒 + 𝐵𝑒𝑃̇𝑒 + 𝐾𝑒𝑃𝑒) = 0 . (14) 

Since the integration is additive, the contributions of all elements must be added. This will 

create a global mass, stiffness and damping matrix 

𝛿𝑃𝑇(𝑀𝑃̈ + 𝐵𝑃̇ + 𝐾𝑃) = 0 . (15) 

The nodal sound pressure variation is any value satisfying the boundary conditions. Therefore, 

the form of the equilibrium equations is as follows 

𝑀𝑃̈ + 𝐵𝑃̇ + 𝐾𝑃 = 0 . (16) 

3. New element 

The purpose of the new element is to describe the complex shape of the cross-section of the 

geometry with a minimum of nodal points. Significant vibration shapes are longitudinal in 

nature. Transverse sound pressure gradients should be less significant. That is why we are 

looking for an element that ideally describes the entire cross-section. The elements are then 

stacked on top of each other, this makes it possible to change the cross-section along the length. 

Internal element nodes are not desirable. They increase the size of the model and the 

computational complexity. 
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A separate element that would have the described properties was not created. The created 

element must be used at least 3 times in each section. The element used is shown in Fig. 1. The 

element is based on a triangular element in the η-ξ plane. It is an isoparametric element in the 

reference coordinate system [3]. This element is of the sixth order of accuracy. It has 28 nodes, 

these nodes have been eliminated at the shape function level. Only corner nodes and nodes on 

coordinates satisfying the equation η+ξ-1=0 are left. Such a planar element is swept out into 

3D space. In the third spatial direction, the element is linear. The resulting element is shown in 

Fig. 1. The nodes at coordinates (0,0,0) and (0,0,1) are located on the midline of the vocal tract. 

The other nodes form the surface of the vocal tract. In this work, 6 elements are used in one 

layer. There are 36 nodes in the section on the circuit.  

 

Fig. 1. Used element 

Numerical tests showed excellent conditionality of the element even with complex geometric 

configurations. Fig. 2 shows that for a circular cross-section the worst-case condition is 2.5 and 

for a strongly non-convex geometry it is 5.5. 

 
Fig. 2. Conditionality elements creating circle and nonconvex area 

4. Vocal tract modelling 

Vocal tract geometry was obtained using MRI. This is the geometry for the vowel /a:/. 

 
Fig. 3. MRI measurement with cross sections and FEM model 
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The geometry is shown in Fig. 3. The green lines are the positions of the sections, and the 

resulting FEM model is on the right. The model was subjected to a modal analysis with velocity 

boundary condition at the inlet and acoustic impedance at the outlet. The impedance was set 

according to [4]. 

 

 
Fig. 4. First 4 eigenmodes 

The results of the analyses from Fig. 4 show a good agreement with the generally accepted 

data, as well as with other better models. 

5. Conclusion 

The designed element has ideal properties for modelling the acoustics of vocal tracts. The model 

of the vocal tract composed of 15 layers with 6 elements has only 592dof and in the frequency 

band 0-6kHz shows a deviation from analytical models of less than 5%. The FEM model with 

new elements can accelerate the analysis and research of the biomechanics of the human voice. 
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This work deals with the identification of the dispersion and attenuation properties of a thin
heterogeneous viscoelastic non-prismatic rod. The first two parts of the text will discuss ap-
plications of these properties and the possible identification method. Next, the experiments are
described, which are performed on several thin homogeneous prismatic rods but also on het-
erogeneous and non-prismatic rods. The experimental results are compared with analytically
obtained results in the following section. At the end of this work, the results are discussed.

The reason for the identification of dispersion and attenuation properties of viscoelastic ma-
terials is mainly to solve the problems of passive vibration damping, and for the SHPB test,
which consists of a thin input and output rod, between which a sample of similar impedance
is placed (see [3]). Previously, typically elastic thin rods have been used in the SHPB test,
which was based primarily on investigating the propagation of longitudinal elastic waves. Over
time, during the development of plastic materials, it was also necessary to investigate wave
phenomena in rods with significantly lower impedance, for which the theory of elastic wave
propagation was no longer sufficient. For the description of wave phenomena in viscoelastic
materials, discrete rheological models are advantageously used, which can be drawn schemati-
cally as a connection of elastic springs and viscous dashpots.

Each homogeneous part of the layered rod is described by a different dashpot viscosity
and spring stiffness. Due to this and the variable cross-section of the rod, different attenuation
and dispersion behaviour occurs in these parts. To determine the properties of the layered rod,
measuring after the wave has passed through the entire rod under investigation is necessary.
Several identification methods can be found that meet these requirements. A method described
by Blanc (see [2]) will be used in this work. This method requires a Fourier transform of the
acceleration measured at two different locations (x1 < x2) on the rod caused by the passage
of the wave packet. According to Blanc, the relations for calculating the phase velocity c(ω)
and the wave number κ(ω) or the attenuation α(ω) can be written as [2]

c(ω) =
ω

κ(ω)
= −ω x2 − x1

θ(x2, ω)− θ(x1, ω)
,

α(ω) = − 1

x2 − x1
ln
ϑ(x2, ω)

ϑ(x1, ω)
,

(1)

where ω is the angular frequency, θ(x, ω) and ϑ(x, ω) are the phase and the modulus of the
Fourier transform of the acceleration, respectively.
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Fig. 1. Experimental data for the heterogeneous non-prismatic rod

Acceleration was measured by two accelerometers of brand Brüel & Kjær Miniature Delta-
Tronr Accelerometer – Type 4519 at the ends of the investigated rods. Rods were excited at
one end by an impact hammer Brüel & Kjær Miniature Impact Hammer – Type 8204. The
signals from the accelerometers and the hammer were processed by an eight-channel analyser
OROS OR35 with a sampling rate of 100 kHz. The measurement was performed on four ho-
mogeneous prismatic rods of approximate length 1m made of polypropylene (PP), polyvinyl
chloride (PVC), polyethene terephthalate (PET), polylactic acid (PLA). Also on a homoge-
neous non-prismatic rod made of PLA of a length 1m and on a heterogeneous non-prismatic
rod, which was composed of 4 homogeneous prismatic parts of different cross-sections and
made of acetal heteropolymer (POM-C), aluminium (AL), polycarbonate (PC1000) and PP in
this order with a total length of 4m. A smooth cosine pulse of length 100− 200µs was gener-
ated for all rods using the mentioned impedance hammer. This pulse excited the heterogeneous
rod at the end of the POM-C segment, and the acceleration response to this pulse can be seen
in Fig. 1b. The amplitude of each excited pulse depends proportionally on the weight of the
examined rod, so Fig. 1a shows the highest measured amplitude. From Fig. 1b, it is possible to
observe a significant decrease in the acceleration amplitude, i.e., the energy dissipation due to
the viscosity and various cross-sections of the rod segment.

The measured phases and modulus of the transformed acceleration were used in relation
(1), and the frequency dependences of longitudinal wave phase velocity and attenuation were
obtained for each rod. These curves were compared with analytically calculated curves for
homogeneous prismatic rods whose material is characterised by Zener rheological model. An-
alytical relations for the evaluation of these curves are provided, for example, by Ahonsi in his
work [1]. In his relations

κ2(ω) =
ρω2

2EE

(H1 +H2) , α2(ω) =
ρω2

2EE

(H1 −H2) , (2)

the author considers transverse contractions during the propagation of the pulse, i.e., the non-
zero Poisson ratio ν and the inertia of the rod elements in the radial direction characterised by
the radius of gyration r. The density of the rod is denoted by ρ, and EE is the modulus of
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Fig. 2. Comparison of analytically obtained and experimentally measured dispersion and attenuation
curves for rods made of homogeneous material

elasticity of the alone-standing spring in the Zener material model. Real functions H1 and H2

in (2) are given by

H1 =

√√√√√
1 + ω2t2R[(

1 +
E1

EE

)
− ρν2r2ω2

EE

]2
ω2t2R +

(
ρν2r2ω2

EE

− 1

)2 ,

H2 =

[(
1 +

E1

EE

)
− ρν2r2ω2

EE

]
ω2t2R −

(
ρν2r2ω2

EE

− 1

)

[(
1 +

E1

EE

)
− ρν2r2ω2

EE

]2
ω2t2R +

(
ρν2r2ω2

EE

− 1

)2 .

(3)

Symbols E1 and tR denote the modulus of elasticity of the spring and the relaxation time cha-
racterising the Maxwell branch in the Zener model, respectively.

When comparing the analytically obtained dispersion curves for all homogeneous materials,
it was possible to achieve agreement within 20 to 50 kHz. For example, the comparison for
a rod made of PVC material is shown in Fig. 2a. For the attenuation curves, it was possible to
achieve a much smaller agreement with the analytics (curves marked as Ahonsi), i.e., from 8
up to 25 kHz, see Fig. 2b showing the attenuation of the PLA rod. The accuracy of the results,
especially the attenuation, was influenced by the relatively low sampling rate of the signal. The
transverse contraction of the rod in the relation (2) positively influenced the agreement of the
results. In the case of a non-prismatic and heterogeneous rod, the comparison of the curves
identified from the excitation at both ends of the rod was used to verify the results. In this
way, it was possible to verify the dispersion curve up to 40 kHz for the non-prismatic rod (see
Fig. 3a), and the attenuation curve only up to 35 kHz (see Fig. 3b). For the heterogeneous rod,
dispersion and attenuation have been verified up to 18 kHz as shown in Fig. 3c and 3d.

The identified dispersion and attenuation curves in Fig. 2 are similar to the curves presented
in [1] and [2]. The phase velocity and the attenuation for a homogeneous viscoelastic rod in-
crease with higher frequencies. For thicker rods, where the measured acceleration is more influ-
enced by transverse contractions, it was shown that with increasing frequency, the wave speed
decreases but the attenuation increases. The dispersion curve of homogeneous non-prismatic
and heterogeneous non-prismatic rods is constant on the identified part, and the attenuation
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Fig. 3. Experimentally measured dispersion and attenuation curves for homogeneous non-prismatic and
heterogeneous non-prismatic rod

curve is increasing (see Fig. 3). The maximum frequency to which these properties can be de-
termined is mainly influenced by the weight of the accelerometers, the low sampling frequency
and the shape of the excited cosine pulse.

In this work, a method of identifying the dispersion and attenuation properties of homo-
geneous prismatic as well as heterogeneous non-prismatic thin viscoelastic rods was described.
Using this method, it was possible to determine these properties from the measured acceleration
and verify them up to tens of kHz.
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1. Introduction
In this paper we shall focus on numerical discretization of a general hyperbolic system written
for the vector of conservative variables u = u(x, t) in the form

∂u

∂t
+∇ · f(u) = 0 in Ω× IT , (1)

where f = f(u) denotes the array of the inviscid fluxes. Eq. (1) is equipped with the initial
condition u(x, 0) = u0(x) for x ∈ Ω.

For the hyperbolic system (1) the aspects of spatial discretization by the finite element
method is discussed. For such a systems there are several physical constraints for the solu-
tion as boundedness of physical quantities (e.g., positive density) which needs to be guaranteed
also for the numerical solution. Moreover, the solution of such system needs to satisfy the en-
tropy inequality, see, e.g., [1, 6]. The numerical analysis of the approximate method usually
focus on the consistency, stability and convergence. The mostly used techniques as finite vol-
umes or discontinuous-Galerkin finite elements moreover satisfy the conservativity naturally
by the construction of the scheme. However, for the higher-order finite element method the
conservativity needs to be discussed, see, e.g., [2].

Moreover, the construction of the numerical scheme should also avoid the occurrence of
nonphysical states. To this end many modern high-resolution schemes use limiters to ensure
preservation of local bounds or at least positivity for scalar quantities of interest. In the con-
text of finite element approximations, such schemes can be constructed using the framework of
algebraic flux correction (AFC) and its extensions to hyperbolic systems, see, e.g., [2,3]. How-
ever, the bound-preserving schemes for nonlinear hyperbolic problems are usually not entropy
stable and vice versa, the entropy stable schemes are usually not bound-preserving. In [4], the
AFC scheme is extended for continuous finite element discretization of a scalar conservation
law using a bound-preserving flux limiter and a semi-discrete entropy fix based on Tadmor’s
condition.

In this paper the construction of the AFC for continuous linear finite element method is
discussed, its application realized on a simple linear scalar problem. The attention is paid on
the realization of the Dirichlet boundary conditions. Numerical results are shown.
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2. FE discretization and its properties
We consider a scalar transport equation in the form

∂u

∂t
+∇ · f(u) = s (2)

equipped with a suitable initial and boundary conditions. We consider the fluxes in the form
f = vu− ε∇u, where v is the velocity and ε ≥ 0 denotes the diffusion.

2.1 Linear FE method

For the purpose of the application of FE method, the weak formulation of (2) is derived in the
form ∫

Ω

w
∂u

∂t
+ w∇ · (vu) +∇w · (ε∇u)dx =

∫

Ω

wsdx+

∫

ΓN

w(ε∇u) · ndS. (3)

Consider the FE space Vh with base φj and approximate the solution u and the velocity v
by the FE approximations uh and vh as u ≈ uh(x, t) =

∑
j uj(t)φj(x), v ≈ vh =

∑
j vjφj .

For the multiplication uv the approximation the group FE formulation is used vu ≈ (vu)h =∑
j(ujvj)φj. This leads to system of ODE written as

∑

j

(
mij

dui
dt

)
+
∑

j

((cij + dij)uj) = ri (4)

where M = (mij) is the mass matrix, C = (cij) represents the convective terms, D = (dij)
corresponds to the diffusion terms (proportional to ε) and (ri) are the source terms. For the
inviscid limit ε → 0+ with zero source terms we get the system in the form M~̇u = K~u with
K = −C, or in the discrete form

∑

j

(
mij

duj
dt

)
=
∑

j

kijuj. (5)

2.2 Discrete operator properties

For the discrete operators the partition of unity(PU) valid for finite elements is important. Tak-
ing the partition of unity propery, i.e.,

∑
j φj = 1, we by differentiation get

∑
j∇φj = 0.

This has direct influence on the properties of the discrete (e.g., mass, Laplace) operators. The
mass matrix is symmetric, positive definite and with the PU we have

∑
i

∑
j mij = |Ω|. The

diffusion matrix D = (dij) is symmetric with zero row and column sums. The discrete gradi-
ent/divergence operator C = (cij) is nonsymmetric with zero row sums whereas the column
sums does not have to be always zero as it is influenced by the mesh properties and boundary
fluxes. For the interior nodes cii = 0 and cij = −cji.

2.3 Algebraic flux limiting technique

The description of the main idea is shown for the finite element approximation of the problem
with zero viscosity and zero sources, which leads to the discrete equations in the form M~̇u =
K~u, where ~u = (ui) is vector of the nodal values, M is the consistent mass matrix and K is
the discrete transport operator. In order to obtain scheme both without undershoots/overshoots
as well as not too diffusive, we need to switch between linear “upwind-like” approximations
and the original scheme. In the finite element context the idea of algebraic flux corrections
reads: replace the consistent mass matrix MC by lumped mass matrix ML, and add an artificial
diffusion operator D to operator K to eliminate all negative off-diagonal coefficients of K. The
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linear local extremum diminishing scheme then reads ML~̇u = L~u, L = K + D. The artificial
diffusion operator D can be rewritten as

(D~u)i = −
∑

j 6=i

fd
ij, f

d
ij = dij(ui − uj) = −fd

ji.

The original scheme can be then recovered ML~̇u = L~u − D~u + (ML −MC)~u, or component
by component

miu̇i =
∑

j

lijUj +
∑

j 6=i

fij, fij = fd
ij +mij(u̇i − u̇j) = −fji, (6)

where mi are coefficients of the lumped mass matrix. In order to prevent the oscillations of the
solution, the fluxes fij are multiplied by suitable correction factors

f ∗ij = αijfij, where 0 ≤ αij ≤ 1.

Inserting these fluxes into (6) we get the nonlinear combination of the low order scheme (αij =
0) and the original higher order scheme (αij = 1). Following the detailed description from [2]
the positive and negative edge contribution to fluxes are accounted for separately

Pi = P+
i + P−i , P±i =

∑
j 6=i min{0, kij}minmax{0, uj − ui},

Qi = Q+
i +Q−i , Q±i =

∑
j 6=i min{0, kij}maxmin{0, uj − ui}

and use in order to limit positive or negative antidiffusive fluxes. The nodal corrections factors
are computed by R±i = min{1, Q±i /P±i } which determine the percentage of P±i that can be
accepted to node i without violating the LED constraint for row i of the modified transport
operator Kmod. The corrections αij are then computed using a suitable limiter, see [2], by

αij =

{
R+

i dij(ui − uj) if ui ≥ uj,
R−i dij(ui − uj) if ui < uj.

(7)

3. Algebraic flux corrections for hyperbolic systems
As an example we can consider Euler equations in the conservative form ∂W

∂t
+∇ · F(W ) = 0

where W = (ρ, ρu, E)T and flux is given as F(W ) = (ρu, ρu⊗ u+ pI, Eu+ pu)T Here, the
total energy E is given as sum of internal energy and kinetic energy, i.e. as E = ρe + 1

2
ρ|u|2

and the pressure is then computed using additional equation of state, for ideal gas expressed as
p = (γ − 1)ρe. In this case the application of AFC needs to take into account the properties of
the hyperbolic system, see [3].

4. Numerical results
First, the developed flux corrected transport scheme was tested for finite element implemen-
tation in 1d and 2d (see Figs. 1–2). The exact solution in this case is just transported with a
constant velocity v and no diffusive fluxes are used, i.e., ε = 0. In Fig. 1 the convection of rect-
angle (left) and semiellipse (right) is shown, where the dashed line shows the initial condition,
the dotted line shows the exact solution, and the solid line shows the numerical approximation.
In this case the transport velocity for 1D case was chosen as v = 1 (1D vector) and the compu-
tations was performed for time period of T = 0.5. For the two dimensional case, the convection
of the block with the rotational flow velocity v(x, y) = (−(y − 1/2), (x − 1/2)) around the
origin is approximated. Here, the time period of T = 2π, so that the initial condition is the
exact solution at time instant t = T . Fig. 2 shows the exact solution (left) and the numerical

157



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Algebraic flux corrections (1d)
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Fig. 2. Algebraic flux corrections (2d)

solution(right). Although the solution is slightly smeared, no undershoots or overshoots were
detected.
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[2] Kuzmin, D., Möller, M., Algebraic flux correction I. Scalar conservation laws, In: Flux-corrected
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1. Introduction 

One way of vibration suppression of mechanical systems is traditionally the usage of vibration 

absorber. It consists of one mass attached by spring, damper and also an actuator into the 

vibrating mechanical system. The actuator is usually used for precise tuning of tonal vibration 

suppression. Such vibration absorber can suppress one frequency in tonal way or some interval 

of frequencies in the vicinity of tuned frequency. 

The paper describes the way how to achieve dual tonal frequency vibration suppression by 

one mass vibration absorber. Previous attempts [1-2] were using delayed feedback and they 

suffer from difficult tuning combined with stability analysis. This paper describes another 

approach with straightforward and simple tuning and stability analysis. The feedback law of 

force actuator is increasing the single mass dynamics in such way that two tonal frequencies 

can be placed into the vibration absorber. The paper then investigates the stability regions of 

dual frequency vibration absorber and the resulting vibration suppression of the overall 

mechanical system. 

2. Formulation 

The system of primary mass (mass mb, stiffness kb, damping bb) with active vibration absorber 

(mass ma, stiffness ka, damping ba) in Fig. 1 is described by the equation of motion 

𝑚𝑎𝑥̈𝑎 = 𝑏𝑎(𝑥̇𝑏 − 𝑥̇𝑎) + 𝑘𝑎(𝑥𝑏 − 𝑥𝑎) + 𝑢 ,     (1) 

𝑚𝑏𝑥̈𝑏 = −𝑏𝑏(𝑥̇𝑏) − 𝑘𝑏(𝑥𝑏) −𝑏𝑎(𝑥̇𝑏 − 𝑥̇𝑎) − 𝑘𝑎(𝑥𝑏 − 𝑥𝑎) − 𝑢 + 𝐹 .   (2) 

In order to achieve dual frequency vibration absorber it is needed to place two frequencies ω1, 

ω2 into absorber (1) by the control u. It can be achieved by the control law PDII2 in bellow. 
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Fig. 1. Primary system mb and vibration absorber ma 
 

Fig. 2. Frequency map of (ω1 and ω2), each 

frequency is ten times the current grid 
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𝑢 = −𝑘𝑝𝑥𝑎 − 𝑘𝑑𝑥̇𝑎 − 𝑘1 ∫ 𝑥𝑎𝑑𝑡 − 𝑘2 ∬ 𝑥𝑎𝑑𝑡 𝑑𝑡 ,         (3) 

𝑢 = −𝑘𝑝𝑥𝑎 − 𝑘𝑑𝑥̇𝑎 − 𝑘1 ∫ 𝑥𝑎𝑑𝑡 − 𝑘2 ∬ 𝑥𝑎𝑑𝑡 𝑑𝑡 + ebxb + dbẋb + 

+k1b ∫ xbdt +  k2b ∬ xbdt dt .      (4) 

Then, the vibration absorber (1)-(3) with the primary system (3) are stable in some intervals of 

frequencies ω1, ω2 but not overall, so there is no guaranteed stability. This means that the 

combined system for some tuned frequencies ω1, ω2 is stable and for another ones unstable. The 

regions/islands of stability are in the plane ω1, ω2 . The ω1, ω2 are parameters of the stability of 

overall combined system. For some values stable, for another unstable. 

3. Results 

The proposed control law (3)-(4) has been used by two approaches. First case I was with tonal 

vibration absorber where 𝛼1𝑎 = 0 and 𝛼2𝑎 = 0, (absorber can be tuned to poles −𝛼1𝑎 ±
𝑗𝜔1𝑎, −𝛼2𝑎 ± 𝑗𝜔2𝑎) using partial feedback with gains (db=10 and eb=-1500, k1b=0, k2b=0). 

The map of stable/unstable frequencies is in Fig. 2 and resulting complete vibration suppression 

in Fig. 4 above. Second case II was with non-tonal vibration absorber where 𝛼1𝑎 = −0.001 

and 𝛼2𝑎 = −0.001 are non-zero. But the partial feedback gains are zero (db=0 and eb=0, 

k1b=0, k2b=0). The map of stable/unstable frequencies is in Fig. 3 and resulting vibration 

suppression in Fig. 4 below. 

 

 

 

 

 

 

 

 

      Fig. 3. Frequency map of (ω1 and ω2) case II, each  

      frequency is ten times the current grid 

4. Conclusions 

The dual frequency vibration suppression is acheived using two case studies. First case study 

with tonal damping shows good suppresion whereas in the seond case the degree of suppression 

is satisfactory. Apart from that, the number of stable and unstable frequencies are localised and 

plotted in the frequency map. 
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On comparison of suitable interpolations
for finite element meshes respecting physical laws

J. Valášek, P. Sváček
Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo nám. 13, Praha 2, 121 35

1. Introduction
This paper is devoted to the interpolation between two computational finite element meshes.
Such interpolation of FE solution onto a new mesh is needed in many applications like mate-
rial cutting, casting, welding, etc., or in the numerical simulation of fluid-structure interaction
with large displacements, where a computational flow mesh quality can significantly deterio-
rate. In this talk we are interested in the interpolation with restrictions as introduced by authors
Pont & Codina [3]. They proposed to combine a computationally cheap interpolation method
together with constraints in the form of Lagrange multipliers which enforce conservation of de-
sired quantities, like e.g. total mass, kinetic energy or potential energy. This approach respects
physical laws and it is efficient, on the other hand its disadvantage is only a global conserva-
tion of physical quantities not the local one. The numerical results consist of comparison of
the Lagrange interpolation and the natural neighbour as representatives of cheap interpolation
methods on a few test cases.

2. Interpolation with restrictions
Let us assume for sake of simplicity a two-dimensional Ω of R2 which is covered by triangula-
tions T o and T n representing the old donor and the new target FE mesh, respectively. Further
we suppose that boundary vertices of T o and T n are identical. Generalizations of these assump-
tions are quite straightforward, see e.g. [3].

Next, we denote a FE function from FE space Vo
h built over the FE mesh T o by uo and

similarly FE function un(x) ∈ Vn
h connected with the given triangulation T n. Function uo can

be expressed as linear combination of FE basis functions ψo
j (x), i.e., uo(x) =

∑
j U

o
j ψ

o
j (x);

correspondingly for function un.
The interpolation with restrictions (IwR) as introduced in [3] consists of two steps. First,

the solution from the old mesh is projected on the new mesh. There are many possibilities,
the preferred one is Lagrange projection, see [3]. Our aim is to compare performance of the
Lagrange projection and the Natural neighbour (NN) interpolation as two different ingredients
of the IwR.

The second step consists of application of appropriate restrictions as a correction step. The
idea of imposing additional restrictions is a key how to improve some bad behaviour of pre-
sented interpolations. One of the biggest interpolation problems is the violation of physical
nature of interpolated variable. The advantage of using restrictions is a generality of the al-
gorithm which can be potentially used in many different scenarios. The disadvantage is that
restriction (i.e., conservation) is still valid only in global and not local sense.
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Natural Neighbour. Natural neighbor (NN) interpolation, introduced in [4], is based on
Voronoi tessellation of given points, i.e., vertices of a considered mesh. The interpolant is a
continuously differentiable function everywhere except at locations of the donor vertices, nev-
ertheless values of the interpolant coincides with the input data here, see [1]. The computation
of interpolating function G at a query point X is following. Point X is added to the given
Voronoi tessellation leading to the creation of a new containing polygon (also called neighbor-
ing polygons) and it’s associated sample points xi are the natural neighbors of the point X .
Then G(X) is evaluated as

G(X) =
N∑

i=1

wi f(xi), (1)

where function f denotes known input data at N points xi. The weights wi are defined as
wi =

∑N
i=1

Si

S
, where Si are area of intersection of i-th original polygon and the newly inserted

polygon having total surface S =
∑N

i=1 Si, see [4].

3. Application to fluid flow problem
The previous general concept is now applied on incompressible flow velocity vo ∈ Vo

h =
Vo
h × Vo

h. By ṽn is denoted the result of projection P used in first step of IwR ṽn = P(vo)
and vn is the final result of the IwR on the target mesh T n. We require the conservation of
following quantities: 1) mass (more precisely only velocity divergence), 2) both linear momenta
and 3) kinetic energy. This leads to following problem: Find

[vn,λ] = arg inf
un∈Vn

h

sup
µ∈R4

L(un,µ), (2)

where µ are Lagrangian multipliers and L(un,µ) is Lagrangian function defined as

L(un,µ) =
1

2

∫

Ω

(∑

k

(Un
k − Ũn

k )ψn
k

)2

dx− µ1

∫

Ω

∇ ·
(∑

k

Un
k ψ

n
k −

∑

j

U o
j ψ

o
j

)
dx

−
2∑

l=1

µl

∫

Ω

(∑

k

Un
k,l ψ

n
k −

∑

j

U o
j,l ψ

o
j

)
dx− µ4

∫

Ω

(∑

k

Un
k ψ

n
k

)2

−
(∑

j

U o
j ψ

o
j

)2

dx.

(3)

The sought solution needs to have first derivatives with respect to all variables equal to zero.
Equations obtained by this differentiating can be written in matrix form as




Mn −RT
1 −RT

2:3 −2MnUn

R1 0 0 0
R2:3 0 0 0

(MnUn)T 0 0 0







Un

µ1

µ2:3

µ4


 =




MnŨn

Ro
1U

o

Ro
2:3U

o

(Uo)T MoUo


 , (4)

where Mn denotes mass matrix with components mn
ij =

∫
Ω
ψn

jψ
n
i dx, Mo is the mass matrix

defined on the old mesh T o and vectors R1, R2, R3 have components

(R1)i =

∫

Ω

∇ ·ψn
i dx, (R2)i =

∫

Ω

ψn
i,x dx, (R3)i =

∫

Ω

ψn
i,y dx. (5)

Vectors Ro
1:3 are defined similarly on the old mesh. Nonlinear problem (4) is solved with the

Newton-Rhapson method.
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4. Numerical results
The Lagrange (Lag) and NN interpolations alone and also as part of the IwR are compared in
two tests. Further, by IwR are denoted the results based on the Lagrange interpolation.

First, academic interpolation test. The interpolation test of [2, 3] consists of 20 pairs of
interpolations between the donor and target triangular meshes covering domain 〈0, 1〉2. Both
unstructured meshes has characteristic length h = 0.025 and the inner vertices of target mesh
are shifted by h/2 to the right. The considered divergence-free velocity F(x, y) has given
components f1(x, y) = 2x2(x−1)2y(y−1)(2y−1), f2(x, y) = −2y2(y−1)2x(x−1)(2x−1).

Fig. 1 shows error distributions after all interpolations and Table 1 quantitatively summa-
rizes the results. The NN interpolation alone is even more diffusive and produces bigger error
than the Lagrange projection, e.g. compare kinetic energy Ekin. Nevertheless method IwR-NN
substantially improves the NN results and it even provides slightly lower error than the IwR
with approximately similar time of interpolation computations.

Table 1. Comparison of interpolation results of the first test

method max |F| Ekin L2 error L∞ error approx. time [s]

exact 1.200× 10−2 6.013× 10−5 − − −
Lag 1.142× 10−2 5.126× 10−5 5.760× 10−7 1.698× 10−3 2.5

IwR 1.237× 10−2 6.013× 10−5 2.405× 10−7 1.137× 10−3 215.8

NN 1.087× 10−2 4.748× 10−5 9.082× 10−7 1.869× 10−3 1.8

IwR-NN 1.223× 10−2 6.013× 10−5 1.823× 10−7 1.036× 10−3 247.2

Fig. 1. Error magnitude of interpolated vector field on structured FE mesh after 20 runs. Mind the
different scales of colorbars for each result

Second interpolation test – real data. The velocity field obtained during a simulation moti-
vated by human phonation is used in the second test, see [5]. The second test performs one pair
of interpolations from the donor to the target mesh and back where both meshes differ in the
middle part representing a channel constriction.

Fig. 2 illustrates relative error distributions after one pair of interpolation runs. The NN
results are again significantly worse than for Lag projection however in this case the application
of IwR-NN does not improve results substantially. This is obvious from quantitatively view-
point – see Table 2, as well as qualitatively from the extent of domain with relative maximal
error bigger than 1% (Fig. 2). The IwR results surpasses the Lag one here only slightly with a
considerable increase of computational time on the other hand the IwR conserves total kinetic
energy (and linear momenta and divergence) and, thus, its application once per ten time step is
still favourable.

Special attention should be paid also to the target mesh. A relative high interpolation error,
particularly in the boundary layer, is caused by a coarseness of the target mesh. In the case with
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similarly dense target mesh the interpolation error would be significantly lower as in the first
test.

Table 2. Comparison of interpolation results of the second test

method max |F| Ekin L2 error L∞ error approx. time [s]

exact 114.200 9.644× 10−2 − − −
Lag 114.081 9.580× 10−2 9.914× 10−5 35.115 1.643

IwR 114.459 9.644× 10−2 9.838× 10−5 34.985 81.092

NN 114.039 9.473× 10−2 2.617× 10−4 55.723 0.242

IwR-NN 115.062 9.644× 10−2 2.564× 10−4 55.426 78.537

Fig. 2. Distributions of relative error magnitudes after one pair of interpolations. Results: a) Lag (top
left) (maxE∞ = 31.1%), b) IwR (top right) (maxE∞ = 31%), c) NN (bottom left) (maxE∞ = 49%)
and d) IwR-NN (bottom right) (maxE∞ = 48.8%). The maximal error (out of presented colorbar scale)
is located for all methods similarly in a few elements of boundary layer inside constriction

5. Conclusion
The paper describes method called interpolation with restrictions (IwR) based on [3]. This gen-
eral interpolation method between FE meshes improves performance of classical interpolation
techniques by additional requirement of conservation of arbitrary chosen (physical) quantities.
Such approach offers an interesting mix of a relatively computationally cheap method which
moreover conserves (total) physical key quantities of the given problem.

Here, the natural neighbour (NN) interpolation is described and used as the first step of the
IwR. The four different interpolations are compared in two tests. The NN interpolation pro-
vides surprisingly more diffusive results than the Lagrange interpolation though it theoretically
provides smoother results. In connection with IwR it performs better on a relatively dense mesh.
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1. Introduction  

Composites are materials composed of two or more components. One of the components 

serves as a matrix, i.e. holds the object shape, transfers the load to the reinforcement and 

protects the reinforcement. The second component is the reinforcement, which has 

a strengthening function. 

The progress FFF method by adding one additional nozzle opened the possibility to print 

continuous fibre-reinforced thermoplastic composites. Unlike conventional production 

methods, the user adjusts the location of the fibre in the structure of the composite and adapts 

the mechanical properties of the composite, see [1]. 

In the past, the authors published a scientific article [4] focused on the Charpy impact test 

and comparison of selected printing parameters (infill orientation, fibre type, fibre volume 

fraction) influence on impact toughness. All observed series of specimens were without 

a notch as allows the relevant standard. However, in similar studies [2, 3], the other authors 

selected notched specimens. Therefore the authors aimed to perform preliminary assessment 

of notch application possibility and identification of notch effect on the impact toughness. 

2. Experiment preparations 

The Charpy impact test was performed on a series of specimens with the shape and 

dimensions defined in Fig. 1. Each of series comprised five specimens. 

  

  
(a) (b) 

Fig. 1. Shape and dimensions of specimens: (a) without notch; (b) V-notched 
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The function of the matrix was fulfilled by nylon reinforced with chopped carbon fibre 

(trademark Onyx). The selected laminas contained reinforcement in the form of HSHT glass 

fibre. The data provided by the printer manufacturer reveals the following mechanical 

properties. 

Table 1. Mechanical properties of composite components (data provided by manufacturer) 

 Young Modulus [GPa] Tensile strength [MPa] Flexural strength [%] 

Onyx 1.4 30 50 

HSHT Glass fiber 21 600 420 

3. Nylon reinforced with chopped carbon fibre and continuous HSHT fibre 

As part of the preparation process, the authors modified the printing parameters (Table 2). 

Each laminate comprised 100 layers, whereas the thickness of laminas was 0.1 mm. The infill 

type was a solid fill with an infill density of 100%. 

Table 2. Printing parameters 

Parameter Value 

Lamina thickness [mm] 0.1 

Number of walls 2 

Reinforcement HSHT glass fibre 

Reinforcement deposition strategy Concentric rings (Fig. 2a and Fig. 2b ) 

Loading direction Direct (Fig. 3a) or perpendicular (Fig. 3b) 

The resulting laminate structure was a sandwich with a suitable fibre location concerning the 

presence of a notch and the need for comparability of results. The selected arrangement type 

of the reinforced fibres in the laminas was concentric rings. 

 
(a) 

 
(b) 

Fig. 2. Concentric rings: (a) specimen without notch; (b) specimen with notch 
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(a) (b) 

Fig. 3. Loading direction: (a) direct to stacking of laminas; (b) perpendicular to stacking of laminas 

The resulting laminate structure was a sandwich with a suitable fibre location concerning the 

presence of a notch and the need for comparability of results (Fig. 4). 

 

Fig. 4. Stacking of the reinforced laminas in the structure: matrix laminas (purple); reinforced laminas (orange)  

4. Results 

The average results of the conducted Charpy impact test are provided in Table 3. 

Table 3. Charpy impact test results 

Series Notch presence Direction of loading Energy [kJ/m^2] 

Alpha No Perpendicular 440 

Beta Yes Perpendicular 220 

Gamma No Direct 480 

Delta Yes Direct 475 

The results showed the effect of loading orientation on the impact toughness of the 

specimens. In both cases, the specimens loaded directly had higher impact toughness. In the 

case of direct loading, the differences between the notched and unnotched specimens were 

negligible. On the other hand, in the case of perpendicular loading, the application of a notch 

resulted in a 50% decrease in impact toughness. Part of the obtained data was also processed 

and analyzed using algorithms programmed in the MATLAB software package. 

5. Conclusion 

The primary aim was to identify the effect of a notch on the impact toughness. In the case of 

specimens with laminas oriented perpendicular to the direction of the loading, the notch 

influence was observed. The value of impact toughness of specimens with notch was 

significantly reduced. On the contrary, no decrease in absorbed energy was observed for 

specimens loaded directly. 
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1. Introduction
Structural design of parts made of long-fiber composite materials is complicated due to their
anisotropy. Data only from uniaxial mechanical tests are insufficient to perform reliable failure
analysis for complex stress states [2]. Therefore, results of failure criteria provided by FEM
simulations should be validated by multiaxial mechanical tests. Fiber reinforced composites are
commonly characterized by small thickness (out-of-plane stresses are negligible) and simplified
approach in form of plane stress is possible [1]. Consequently, biaxial mechanical tests can be
performed to failure criteria validation.

Two types of biaxial tests for fiber reinforced composites are commonly used. Combina-
tion of axial (tensile/compression), torsional and pressure loading (internal/external) can induce
biaxial stress state in tube specimens. Tube specimens were used World Wide Failure Exer-
cise [4]. Second commonly used approach are planar cruciform specimens. Desired biaxial
stress state is induced by combination of tension and compression in two independent axes.
The advantage of using cruciform specimens is relatively easy and repeatable manufacturing
compared to the tubular specimens. On the other hand, cruciform biaxial test requires special
test equipment. Also stress computation is not straightforward due to difficult determination of
loaded area [2]. Next issue is proper design of cruciform specimen to be able perform a reliable
test.

Biaxial test machine was developed for purpose of biaxial cruciform testing at VÚTS, a.s.
Test machine consists of 4 independent actuators with maximal load capacity 10 kN. The stroke
of the machine is 350 mm, which allows both composite and elastomer testing. Tests can be
performed in displacement or load control mode. Displacements and strains are measured by
Digital Image Correlation system Monet 3D. Detail scheme of the equipment is shown in Fig. 1.

Biaxial testing machines with servomotor and ball screw loading system are much cheaper,
than the one with hydraulic loading. On the other hand they are limited by maximal loading
force. Wider application of biaxial cruciform tests could be adopted if testing machines with
small force range could be applied to perform biaxial test on composite materials. For this
purpose it is important to assess influence of tab thickness on specimen strength. Numerical
simulations with progressive damage and experimental test are performed in this work. Two
types of specimen are tested i) CFRP cross-ply specimen with no tabs, ii) CFRP cross-ply
specimen with bonded tabs of 2 plies of woven GFRP.

2. Biaxial cruciform tests
Equibiaxial tests with strain ratio R = 1/1 are performed in displacement control mode. Type
of cruciform specimen geometry is double corner fillet with reduced thickness in the central
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Fig. 1. Biaxial testing machine: CAD model scheme and real machine

area. The geometry arose from the geometry C developed in [3] and several adjustments were
made. The specimen is 0.7× scaled down to be able perform measurement at test machine
with maximal load 10 kN. And the arms are not straight but towards the clamps they are wider
to ensure good grip in the clamps. Cross-ply laminate [0, 90]S is measured. The material is
unidirectional carbon fiber 50K 125 gsm with epoxy resin LH385 manufactured by vacuum
infusion process. Glass fiber 200 gsm woven laminate pads are bonded to the CF laminate
using Letoxit PL20.

The stress in the central section of the specimen can not be evaluated directly from the area
as in the case of uniaxial tests. For linearly elastic materials (carbon fiber laminates) is possible
compute stress from equation for plane stress for ortotropic material using measured strains [2].
This approach requires values of Ex, Ey, νxy and νyx obtained from uniaxial tests or estimation
based on micro-mechanical models.

3. Numerical model
Numerical simulation of biaxial cruciform test is performed to be able validate failure criteria
results. Finite element software Ansys 2021R1 with composite module ACP is used. The
material model is ortoropic elasticity with progressive damage. The progressive damage model
uses Puck failure criterion - when the failure criteria is met, the mechanical properties in the
element are degraded. Degradation factor 1 means 100 % reduction and 0 means no reduction
of mechanical propertie. Values of degradation factors are set to E∗

ft = 0.99 (Fiber tensile
damage), E∗

fc = 0.99 (Fiber compression damage), E∗
mt = 0.85 (Matrix tensile damage) and

E∗
mc = 0.5 (Matrix compression damage). Mechanical properties of specimen and tabs are

summarized in Table 1. The boundary conditions are u = 0.5 mm in the end of the tabs.

4. Results and discussion
Strains at failure are evaluated as average strain in the 9 × 9mm square in the central area of
the specimen. Measured values of strain at failure and computed strengths are summarized in
Table 2. Specimens with GF tabs achieved higher strains at failure, 0.2 % higher compared to
the specimens without tabs.
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Table 1. Mechanical properties of unidirectional CF laminate [0]4 125 gsm and woven GF laminate [0]4
200 gsm. E and G in [MPa] and ν in [1]

Ex Ey Ez νxy νyz νzy Gxy Gyz Gxz

CF specimen 113 600 4700 4700 0.277 0.42 0.277 4700 3080 4700
GF tabs 22 400 22 400 7500 0.14 0.3 0.3 3300 2700 2700

Table 2. Measured values of strain at failure and computed strength of different specimens

εrx [%] εry [%] Xt [MPa] Yt [MPa]
No pads Average 1.08 1.06 651 640

St. Dev. 0.06 0.06 354 360
2 GF plies Average 1.24 1.28 746 773

St. Dev. 0.11 0.07 63 45

Measured representative force – strain curves are shown in the Fig. 2 on the left. On the
right side of the same figure, there is comparison of experiment (full line) with FEM simulation
(dash-dotted line). Complete failure of specimen in simulation is evaluated as first stiffness loss
(force decrease). Simulations exhibits stiffer behavior of the specimen but failure is predicted
earlier (lower strain and force results) than in experiment. Circle point show first matrix failure
(FMF) and square point show first fiber failure (FFF) computed in simulation. This plot shows
comparison of design approaches for failure prediction: i) failure criteria (FMF, FFF), ii) failure
criteria with progressive damage model and iii) validation of failure criteria by mechanical
testing. As the plot shows, cruciform biaxial tests can make failure prediction more precise and
therefore accurate safety factor adjustment.

Fig. 2. (Left) Experimental results for specimens without tabs and with tabs from 2 GF layers.
(Right) Comparison of strains in X axis of experiment (full line) with simulation (dash-dotted line)

Specimens without tabs failures prematurely – the failure is observed in the single arm and
not in the central area. Typical failure of specimen with tabs of 2 is depicted in Fig. 3. The
failure occurs in the central sections near the pads. No delamination between specimen and
tabs is observed as reported in [2].
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Fig. 3. Typical failure of specimen with tabs of 2 GF plies
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Failure probability estimation of functions
with binary outcomes via adaptive sequential sampling

M. Vořechovský
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In many computational models for the performance of an engineering product, which feature
random input variables, the outcome may be simply binary information: either safe state or
failure event. Moreover, computational models sometimes do not return any answer for a com-
bination of inputs because the computation crashes. While the discrete state nature of the com-
putational model outcome is in general acceptable for Monte Carlo type simulation techniques
for estimation of failure probability, the need to use computationally expensive models de facto
permits this brute force integration. The reason is that the crude Monte Carlo and also various
variance reduction techniques such as Importance Sampling for approximation of probabilistic
integrals require a high number of simulations to estimate rare event, which is not feasible for
models computing one realization more than a few seconds. The samples drawn in sampling-
based techniques are in fact independent of each other which is detrimental to the rate of conver-
gence to the true values with an increasing number of outcomes. The use of quasi Monte Carlo
techniques is not of much help in reliability problems as the convergence rate improvement is
not sufficient.

The absence of any information about the “landscape” in the case of binary performance
function also permits the use of methods designed for estimation of failure probability which
use the numerical value of the outcome to compute gradients or to estimate the proximity to
the failure surface. Even if the performance provides more than just binary output, the state
of the system may be a non-smooth or even a discontinuous function defined in the domain of
input variables. In these cases, the classical gradient-based methods typically fail. Even if the
approximation of failure probability is so effective that it uses only the location and perhaps
the shape of the failure surface in the high probability regions (such as FORM or SORM), they
still can not be used, because the discovery of the “most probable points” is usualy based on
gradient optimization techniques, be it deterministic (design point search in FORM/SORM) or
stochastic gradient optimization (subset simulation, etc.).

This paper promotes the recent paper [1] in which a new simple yet efficient algorithm for
sequential adaptive selection of points from the input domain of random variables is presented.
The extension of the experimental design (ED) is designed to automatically balance global
exploration of new territories in the input space with local exploitation of information in regions
containing the failure surface, i.e., the boundary between the failure and safe sets. The extension
algorithm sequentially adds new points (one by one) in such a way that the new ψ criterion is
maximized. The criterion effectively estimates the amount of probability being classified by
the evaluation of the expensive computational model in a candidate. The evaluation of the
criterion is extremely fast as it uses only the known probability density at a candidate and its
nearest previously evaluated point and the distance between them. Therefore, it suffices to offer

173



and evaluate the ψ criterion for a large set of candidates, and select the one with the greatest
criterion value. Each evaluation of the function in the winning candidate leads to an update of
a simple distance-based surrogate model used to censor our candidates with almost sure model
output. Only the predefined set of exploratory points and candidates with two different types of
outcome in the nearest points are retained for selection. The result of this sequential adaptive
selection is a quick refinement of the failure surface or exploration of a new territory, and this
is performed proportionally to the gained probability.

At any stage of sequential sampling, the proposed surrogate model can be used to estimate
the failure probability via tailored importance sampling scheme and a simple distance-based
surrogate model. In cases there are more than just one type of failure event, the method can be
automatically generalizes to estimate failure probabilities of all even types. Finally, if there is a
possibility to use numerical outcomes from the model to build a smooth surrogate, the algorithm
can be use it to improve the estimates.

Let us assume the input random vector is bivariate standard Gaussian and the 2D space is
divided into safe and failure domains by the wavy circle; see the blue curve in Fig. 1. The
left panel in Fig. 1 shows a stage in which the previously evaluated responses are pictured as
red (failure) and green (safe) ED points. The panel also shows a large number of candidates
which are excluded from further competition for becoming a winning candidate, because their
two nearest neighbor ED points are of the same type. The middle panel shows the retained
candidates plus the exploration points (empty cirlces) which are blue-colored depending on the
proposed ψ criterion. The light blue cross is the winning candidate in which future performance
function will be evaluated. The right panel show importance sampling integration nodes.

Fig. 1. Illustration of the proposed methodology using a two-dimensional problem with seven effectively
disconnected failure domains, each with the same contribution to the probability of failure
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Problematic of composite materials with woven reinforcement
J. Žák, J. Ezenwankwo

Faculty of Mechanical Engineering, Technical University of Liberec, Technická 1402/2, Liberec, Czech Republic

Since the beginning of the production of composites, one of the most common forms of re-
inforcement is woven structure, i.e., fabric. Although accepted for general use without reser-
vation, this form of reinforcement is shown to have its limits in certain areas of application.
During the development of deformation members for the automotive industry, we encountered
a problem where fibers that seemed very suitable for this purpose lost half of their ability to
absorb energy due to weaving in. This led us to a more detailed analysis of the behavior of the
fiber structure in the form of a plain weave.

We tried to explain the differences in the behavior of the material in the form of the yarn
itself and in the form of a woven structure by the process itself of weaving-in the yarn. So to a
certain extent we chose a mezzo scale approach, thus. The first thing we encounter when trying
to describe a fabric is determining its geometry. It is of course possible to proceed experimen-
tally, but this approach requires a former knowledge of the specific fabric, either in the form
of a laminated composite or in another form. Since viscose fabric is not a common article, we

D

t

φ

A
A

Fig. 1. Description of a plain weave fabric geometry at mezzo scale
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did not have this knowledge available, so we proceeded using geometric notions. We modeled
the fabric using sine waves with a sinusoidal cross-section, see Fig. 1. This idea is used in the
so-called lens model of fabric, however, in general it is not used either to determine the thick-
ness of the fabric neither to determine other parameters that have an effect on the mechanical
properties and properties affecting the resulting composite, for example the volumetric ratio of
reinforcement.

Let us assume to be known all the characteristic parameters of the fabric in plain balanced
weave, i.e., two of following three parameters are given: either the area density γ ([γ] = kg

m2 ) or
density of weft yarns d1 ([di] = 1

m
) and that of warp d2 = d1 or fineness λ1 = λ2 ([λ] = kg

m
) of

both yarns. Let us assume the circular cross section of individual filaments, too; this assumption
is well respected for glass or carbon. As the helix angle of the filaments in a yarn is very flat the
filaments can freely reposition and thus, their most compact layout is in hexagonal mesh, see
detail in Fig. 2. Maximum volumetric ratio of filaments in a yarn is then given by geometry of
this hexagonal cell

vf,yarn =
π

2 ·
√
3

.
= 0.9. (1)

Volume of yarns in the cell bounded by the boundaries of one binding point is (see Fig. 1)

Vf =
4

π
· A ·D2.

As the thickness is t = 2 · A, the volumetric ratio of yarns in the cell then is

vf,cell =
Vf

2 · A ·D2
=

2

π
. (2)

Taking into account the relation (1), we get the final formula for the maximal volumetric ratio

Fig. 2. Description of a plain weave fabric geometry at micro scale
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of reinforcement in a plain weave fabric

vf,max = vf,yarn · vf,cell =
1√
3

.
= 0.58. (3)

A few additional notes:

1. This value is valid for fabrics with high density of yarns di. It may be higher for very flat
yarns (tapes, narrow rovings) in the specially designed fabrics.

2. This value does not depend on the weave (i.e., theoretically it is the same for twill or satin
weave), its prove lies outside of the scope of the presented work. However, the weaves
other than plain are prone to become more easily flat when under pressure which affects
the real value of vf .

3. In practice it is possible to exceed slightly this limit value by using for example very high
pressure to compact the plies in a laminated composite.

4. Higher values of vf reported by experimenters are not to be necessarily wrong, the mea-
sured values depend strongly on the experimental procedure.

The fabric thickness is the key value when modeling a fabric ply, e.g., using FEM. With respect
to (3) and using parameters of the fabric, we get

t =
γ

ρ
·
√
3, (4)

where γ is the area density of fabric and ρ is density of the yarn material. It is certainly inter-
esting that the value determined following (4) tends to be much closer to the real thickness of
the fabric ply in a laminated composite than the value determined experimentally following the
ASTM D1777 – 96 (2019) standard [1].

Another phenomenon that relates closely to the woven composite reinforcement is the wave-
ness of the yarn. In fact it was this effect of yarn undulation that has brought us to the problems
of the woven reinforcements. Once the geometry based on fabric parameters is known we can
easily calculate the real length of the corresponding section of yarn as well as the crossing an-
gle ϕ of yarns. As the fabrics are relatively flat (the report between t and D is of order 0.1),
corresponding elongation of yarn is around 1%. This seems to be very low but in reality it con-
sumes non negligible part of available yarn strength. This is all the more important the stiffer
the fibers are. Thus the final strength of the fabric is significantly lower than the sum of the
strength of individual yarns comprised in the corresponding fabric width.

Even with known (calculated or measured) strength values of a fabric reinforced composite
the calculations are complicated by drawbacks of used failure criteria. In a general-use FEM
software such bidirectional reinforcement is usually modeled by superposing two unidirectional
plies. This is often done internally during preprocessing using classical theory of composites
and the resulting values of moduli and strength are used for FEM computations. The most used
failure criterion of composites in postprocessing then is that of Tsai-Hill (or its variant Tsai-
Wu) which, however, are derived for unidirectional cross isotropic materials [2]. So for a fabric
ply it should be used either the full Hill criterion either some of its variations for appropriate
material properties. It has to be said that there are dedicated FEM software that offer to take this
difference into account. For example, for the balanced fabric working under in-plane stresses
and with the same behavior in traction and compression, we have Rl = Rt in-plane strengths,
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a different value for normal-to-ply direction Rn and of course values for shear strength Rlt and
Rln = Rtn. We get the criterion in the following form:

κ =
(σl − σt)2

R2
l

+
σl · σt
R2

n

+
τ 2lt
R2

lt

.

As can be seen, the value of such a criterion depends strongly on the out-of-plane intralaminar
strength Rn (not to be confused with interlaminar strength). This value is unfortunately difficult
to measure. One possible way to determine it theoretically could be by using known fabric
geometry at mezzo scale with given strengths of yarns and matrix, but this approach has not
been explored yet.

While working on the rayon fabric, we faced quite surprising, albeit simple, challenges; just
to describe the fabric geometry without time-consuming experiments is not completely obvious.
On the other hand, it turned out that the mechanical properties of woven reinforcements are
in principle limited and the fabric cannot fully utilize the quality of the yarns. The use of
woven reinforcement in composite materials must therefore be strictly justified. In many cases,
especially in the one where a pseudo-isotropic stacking is to be used, there is an alternative to
using reinforcement fibers in the form of a much cheaper mat.
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1. Introduction 

The aim of this work is the search for a new analytical method of calculating the stiffness of 

the wound composite beams with the circular cross-section. The FE models and several 

analytical calculations were performed for chosen geometry of the composite beam and all 

results are compared to experimental data. The experiment of three-point bending on fibre-

reinforced composite beams with two different composite lay-ups and two different diameters 

of the tubes was done. The stiffness of all specimens was also calculated. The comparison of a 

new semi-analytical method with the well-known analytical methods [1] of stiffness calculation 

and FE models are introduced in this paper.  

Composite beams are very variable not only in their shape or cross-section, but also in the 

layup of the composite material from which they are made. This creates several variables that 

we must consider when calculating their deformation. It is well known that the available 

methods for calculating the deformation of composite materials do not provide relevant results 

for all possible types and shapes of composite beams. It turns out that these methods differ in 

the results for the same case of a composite beam or are too complex for the initial design of 

the part. Also, the results of these methods differ from a possible experiment. Analytical, semi-

analytical, and numerical methods are known for calculating the deformation of composite 

beams. The comparison of Timoshenko's and Bernoulli's method of bending calculation, the 

method of calculation using ABD matrices and the numerical FE method were chosen as the 

basis for this work. All these methods were applied to an embedded composite beam with an 

inter-circular cross-section. The aim of this work is to find out in which specific cases the 

mentioned methods of calculating the effective stiffness of composite beams are valid for the 

general composition of the composite material. 

2. Analytical methods for calculation the equivalent stiffness modulus of the composite 

tubes 

2.1. The stiffness matrix and the compliance matrix 

The Hooke's law contains the stiffness matrix S, 

 𝝈 = 𝑺 ∙ 𝜺 . (1) 

The modulus of elasticity is expressed for each layer separately by means of the stiffness matrix 

S in the main coordinate system of the composite material 𝑂(𝐿, 𝑇, 𝑇′). An orthotropic material 

is considered. [1] To express the equivalent modulus of elasticity in the main coordinate system 
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of the whole beam 𝑂(𝑥, 𝑦, 𝑧), it is possible to use the stiffness matrix 𝑺𝒙𝒚 or an inverse matrix 

the compliance matrix 𝑪𝒙𝒚. The stiffness matrix 𝑺𝒙𝒚 is expressed by the following 

transformation (2) to the coordinate system 𝑂(𝑥, 𝑦, 𝑧) and the compliance matrix 𝑪𝒙𝒚 is inverse 

to it (3), 

 𝑺′𝒙𝒚 = 𝑻𝒙𝒚 ∙ 𝑺 ∙ 𝑻𝒙𝒚
′  , (2) 

 𝑪′𝒙𝒚 = 𝑺′𝒙𝒚
−𝟏 . (3) 

The modulus of elasticity in the direction of the beam axis 𝐸𝑥 can be obtained from the 

compliance matrix C’xy, and also from the stiffness matrix S’xy. The element S’11 is an element 

of the stiffness matrix S’xy and element C’11 is an element of the compliance matrix C’xy. The 

usage of the stiffness matrix S’xy represents the upper estimate of the equivalent stiffness, the 

use of the compliance matrix C’xy the lower estimate of the stiffness of the composite beam. In 

the results section, their arithmetic mean is also used. 

2.2. Calculation of equivalent elasticity modulus Eeq by Classical Laminate Theory 

To calculate the deflection of a composite beam with a circular cross-section using method from 

[1] the following equation is used  

 [𝑁 ⋯  𝑀 ] = [𝐴 ⋮  𝐵 ⋯  ⋮  ⋯  𝐵 ⋮  𝐷 ][𝜀°𝑚  ⋯  𝑘 ] . (4) 

The force loading of the beam can be expressed using the elements of the matrix A [2]. The 

stress of a composite material using Hooke's law is expressed. To obtain the stress relationship, 

it is necessary to divide this expression by the total thickness of the composite material 𝑡.  

 𝜎1 =
𝑁1

𝑡
=

1

𝑡
(𝐴11 − [𝐴12 𝐴16 ] ∙ [𝐴22 𝐴26 𝐴62 𝐴66 ]−1 ∙ [𝐴21 𝐴61 ]) ∙ 𝜀°1 . (5) 

The equivalent modulus of elasticity is expressed by the following relation. 

 𝐸𝑒𝑞 = (𝐴11 − [𝐴12 𝐴13 ] ∙ [𝐴22 𝐴23 𝐴32 𝐴33 ]−1 ∙ [𝐴21 𝐴31 ]) ∙
1

𝑡
 .    (6) 

2.3. A new semi-analytical method 

A new semi-analytical approach is based also on the Classical Laminate Theory and tries to 

calculate the equivalent stiffness of the beam with the combination of the tensile and bending 

stiffness matrix elements. The assumption for this theory is that the geometry of the composite 

beam with circular cross-section combines the tensile and bending loading of the material of 

the composite beam. The combination of the elements of matrix A and matrix D (4) is used in 

a superposition of the stiffnesses.  

 (𝐸𝐽)𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 = (𝐸𝐽)𝐴11
+ (𝐸𝐽)𝐷11

. (7) 

3. Experiment 

Composite wound tubes (T700/epoxy matrix) with an inner diameters of 26 mm and 50 mm 

with the 3 mm (thick) and 1 mm (thin) wall thickness were selected as specimens. The 

geometrical characteristics of the specimens were chosen to compare the results from the 

analytical and FE methods in cases of thick and thin-walled beams. The tests were performed 

for three composite layups. Three-point bending tests were performed on an FPZ 100/1 loading 

machine. Supports with a span of 400 mm and 750 mm were used for the tests. The beams were 

loaded with force through the strap with a width of 25 mm. The deflection was measured with 

a laser extensometer OptoNCDT 1320 and strain with a strain gauge. The sensors were placed 

in the centre of the beam under the loaded place and one extensometer was placed in the quarter 

of the span length. Groups of six pieces from each combination of fibres, composite layup, and 

support span were tested. The average value of the equivalent stiffness EJeq was evaluated. All 
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specimen types were modelled by available FE methods (in Abaqus) and the equivalent 

stiffness was calculated. All the mentioned analytical methods were also used to calculate the 

equivalent stiffness. A comparison of these values is shown in the following section. 

4. Results 

The results show the deviations of all calculation methods from the experimental data in 

percentages. The equivalent stiffness EJeq of beams is compared. The results of two lay-ups are 

presented. These are results of beams with inner diameter 26 mm, 400 mm span and Diagonal 

lay-up [90 °, ± 45°] in Fig. 1. The second results are for beams with inner diameter 50 mm, 750 

mm span and Typical lay-up [90°, 0°, ± 30°] (Fig. 2) Both results are for the thick and thin 

variant of composite beams. The average stiffness (EJ_mean in the figures) obtained from the 

matrix S’ and C’ shows a good agreement with the experiment, but this method usually predicts 

higher stiffness compared with experimental data. The new semi-analytical approach shows the 

constant deviations of less than 25% for the thin variant and less than 7% for the thick variant 

from experimental data in both cases of specimens. These results are on the safety side of the 

calculation in most cases compared to the experimental data. 
 

 

Fig. 1. The deviation from the experiment of equivalent stiffness for beams with ID 26 mm and Diagonal 1 

[90°, ±45°] 

 

Fig. 2. The deviation from the experiment of equivalent stiffness for beams with ID 50mm and Typical layup  

[90°, 0°, ±30°] 
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5. Conclusion 

None of the methods described above gives sufficiently accurate predictions of the stiffness of 

experimentally tested beams. There is still a noticeable problem where the results of different 

methods show different outcomes of the beam equivalent stiffness EJeq. From the performed 

comparison, methods with the best results are commented on.  

The new semi-analytical approach reached a good agreement with experimental data in both 

composite lay-ups. A method based on the mean of an upper and lower estimate of the stiffness 

of the composite lay-up seems to be almost equally suitable, but with the deviation that predicts 

the greater stiffness than the experiment. In terms of computational complexity, the proposed 

approaches are less demanding than the FE method and are therefore suitable for fast usage for 

the preliminary design. The numerical optimization of these approaches is also possible. 
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Realization of some technological processes requires application of rotating machines with a 

vertical rotor mounted in rolling element bearings. One of the requirements put on their 

operation is minimization of energy losses in the support elements. The losses have several 

physical reasons. They rise with increasing loading, speed of the shaft rotation, and kinematic 

viscosity of the lubricant [1]. Replacement of one or more rolling element bearings with a 

contactless one represents a significant design alteration making it possible to contribute to cuts 

of energy losses.  

Application of magnetic elements for reducing energy losses in the rotor supports was 

studied at several working places. A historical review and formulas for designing permanent 

magnetic bearings are reported in [2]. The approach to determination of stiffness of axial 

bearings using permanent magnets can be found in [3]. The advanced technological solution 

based on reducing axial loading of rolling element bearings supporting vertical rotors consists 

in their lifting by means of annular permanent magnets. The details on application of this design 

solution are reported in [4]. Efficiency of lifting the rotors was analyzed in [5]. A new concept 

of a shear magnetic bearing was introduced by Zapoměl et al. in [6]. The intentional change of 

the bearing stiffness to reduce vibration of a rotor system passing through the critical speed was 

analyzed by Zapoměl and Ferfecki in [7].  

The proposed design variant consists in supporting the vertical rotor by one rolling element 

bearing placed at its upper part and by one axial magnetic bearing mounted in its lower end. 

The magnetic bearing is composed of an electric coil coupled with the stationary part and of a 

permanent magnet attached to the rotating part. The magnetic force attracts the permanent 

magnet, which reduces radial displacement of the lower end of the rotor. The magnetic field 

between the magnets represents a force coupling between the rotor and the stationary part, 

which shows some stiffness and affects the system natural frequencies. The controlled change 

of the stiffness makes it possible to reduce the rotor lateral oscillations in the resonance area.  

Applicability and properties of the proposed design concept was studied by means of 

analysis of oscillations of a pendulum focusing on construction of the frequency response 

characteristic of the system for variable magnitude of the applied current. 

The investigated pendulum (Fig. 1) is coupled with the frame by a revolute joint at its upper 

end. The permanent magnet is attached to its lower end. The electric coil is coupled with the 

stationary part and placed under the pendulum. The system is excited by a moment of harmonic 

time history, which sets the pendulum into a seesaw motion. The task is to construct the 

frequency response characteristic in dependence on magnitude of the applied current passing 

the winding of the coil. Amplitude of the oscillations is assumed to be small. The computational 

simulations should be used to solve the problem.  
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Fig. 1. The investigated system 

 

The introduced coordinate system and the generalized coordinate φ of the pendulum angular 

position is evident from Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The introduced coordinate system 

 

In the computational model the pendulum is considered as absolute rigid, the revolute joint 

as absolute rigid and neutral (with no resistances against motion), and the damping produced 

by the environment as linear. The coil attached to the stationary part has only one turn. The 

permanent magnet connected to the pendulum is represented by a magnetic dipole. Because of 

small displacements, it was assumed that the magnetic field produced by the coil near to its 

center is homogeneous in the radial direction.  

The oscillation of the pendulum is governed by the motion equation  

 

𝐽𝜑̈ + 𝑏𝑃𝜑̇ + [𝑚𝑔𝐿𝑇 + 𝐹𝑚𝑎𝑔(𝐼)𝐿]𝜑 + 𝑀𝑚𝑎𝑔(𝐼) = 𝑀𝐴sin(𝜔𝐵𝑡) , (1) 
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J is the pendulum moment of inertia relative to the axis of rotation, m is the pendulum mass, bP 

is the coefficient of the pendulum external damping, L is the length of the pendulum, LT is the 

distance between the pendulum axis of rotation and the center of gravity, g is the gravity 

acceleration, Fmag is the magnetic force acting on the pendulum, Mmag is the magnetic moment 

acting on the pendulum, I is the applied current feeding the coil, MA is amplitude of the 

excitation moment, ωB is the excitation angular frequency, t is the time, φ is the generalized 

coordinate of the pendulum position, and (.), (..) denote the first and second derivatives with 

respect to time.  

The magnetic force and the magnetic moment are functions of the applied current I feeding 

the coil. If the current is constant, the motion equation is an ordinary linear differential equation 

of the second order with constant coefficients   

 

𝐽𝜑̈ + 𝑏𝑃𝜑̇ + 𝑘𝑒(𝐼)𝜑 = 𝑀𝐴sin(𝜔𝐵𝑡) , (2) 

 

because the magnetic moment Mmag is proportional to the angle of rotation φ. ke is the equivalent 

stiffness of the system.  

The motion equation shows that the natural frequency of the system can be controlled by 

increasing or decreasing magnitude of the magnetic force and moment.  

The principal physical and geometric parameters of the analyzed pendulum are: mass 65 g, 

moment of inertia 0.0016 kgm2, length 305 mm, the gap between the permanent magnet and 

the electric coil 0.5 mm, magnetic moment of the permanent magnet 1.26 Am2, and amplitude 

of the excitation moment 0.020 Nm.  

Application of the current of 200 A rises the natural frequency from 7.15 rad/s to 7.63 rad/s. 

which corresponds with rising the critical speed as evident from the frequency response 

characteristic depicted in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Frequency response characteristic 

 

The simulation results show that application of the current in the area of sub-critical 

frequencies and switching the current off in the region of ultra-critical ones makes it possible 

to reduce amplitude of the pendulum oscillations. This manipulation can be utilized for 

minimizing the vibration amplitude if the excitation frequency rises and the system passes 

through the resonance region.  
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1. Introduction
Subsystems of flexible multibody systems are often described by models with many degrees
of freedom (DOF) and with proportional damping. Nonlinear couplings between the subsys-
tems make the vibration analyses too time consuming. Then it is desirable to apply one of the
DOF number reduction of the whole system. A suitable and established methods is the modal
synthesis method (MSM) [1, 3, 5]. The classical approach of the MSM is based on the reduc-
tion of the natural modes of conservative models of subsystems respected in dynamic response.
The modal properties of damped subsystems are expressed by complex eigenvalues and com-
plex eigenvectors. The main aim of this contribution is to present the new complex MSM with
DOF number reduction of each proportionally damped subsystem. A variation of the proposed
method modified for rotating mechanical systems with gyroscopic effects has been published
in [7].

2. Mathematical model of the multibody system
Let us consider a multibody system composed of N subsystems linked by generally nonlinear
couplings. Motion equations can be expressed in the matrix form

Miq̈i(t) +Biq̇i(t) +Kiqi(t) = fEi (t) +
N∑

j=1,j 6=i
fCj,i(qi, qj, q̇i, q̇j), i = 1, . . . , N. (1)

Let mass, damping and stiffness matrices Mi, Bi, Ki be symmetric of order ni. In addition,
let the damping matrices meet the proportionality conditions

(v(i)ν )TBiv
(i)
ν = 2D(i)

ν Ω(i)
ν , ν = 1, . . . , ni, i = 1, . . . , N , (2)

where Ω
(i)
ν are the eigenfrequencies and v(i)ν are the eigenvectors of the conservative part of

subsystem model i. These modal values satisfy the orthonormality conditions

(v(i)ν )TMiv
(i)
ν = 1, (v(i)ν )TKiv

(i)
ν = (Ω(i)

ν )2, ν = 1, . . . , ni, i = 1, . . . , N. (3)

Damping factors D(i)
ν describe the proportional damping of subsystems. The time dependent

vector fEi (t) expresses excitation of subsystem i. Nonlinear vectors fCj,i express the nonlinear
forces—an action of subsystem j ∈ {1, . . . , N}, j 6= i on subsystem i in case of mutual contact.
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The first-order formulation of the equation of motion (1) in the state space ui = [q̇Ti , q
T
i ]T

have the form
Niu̇i(t) + Piui(t) = pi, i = 1, . . . , N, (4)

where

Ni =

[
0 Mi

Mi Bi

]
, Pi =

[
−Mi 0

0 Ki

]
, pi =




0

fEi (t) +
N∑

j=1,j 6=i
fCj,i(ui,uj)


 . (5)

Modal properties of each individual subsystem i are expressed by the complex diagonal spectral
matrix

Λi = diag[λ
(i)
1 , . . . , λ

(i)
ni
, λ

(i)∗
1 , . . . , λ(i)∗ni

] = diag[Λi,Λ
∗
i ] ∈ C2ni,2ni (6)

and the complex modal matrix

Ui = [u
(i)
1 , . . . , u

(i)
ni
, u

(i)∗
1 , . . . , u(i)∗ni

] = diag[U i,U
∗
i ] ∈ C2ni,2ni . (7)

Complex eigenvalues λ(i)ν with a positive imaginary part and corresponding eigenvectors u(i)
ν

can be expressed in terms of eigenfrequencies Ω
(i)
ν and eigenvectors v(i)ν of the conservative

part of subsystem model i in the form

λ(i)ν =−D(i)
ν Ω(i)

ν + iΩ(i)
ν

√
1− (D

(i)
ν )2, u(i)

ν =

[
λ
(i)
ν q

(i)
ν

q
(i)
ν

]
, ν = 1, . . . , ni, i = 1, . . . , N . (8)

Eigenvectors q(i)ν in the original space of generalized coordinates of the subsystems can be
quickly calculated from the relation

q(i)ν =
1√
i
· v

(i)
ν√

2Ω
(i)
ν

√
1− (D

(i)
ν )2

, ν = 1, . . . , ni, i = 1, . . . , N , (9)

where i is the imaginary unit.

3. Complex modal synthesis method with DOF reduction
Complex MSM with DOF reduction is based on an incomplete transformation of state vectors
ui(t) in (4) into the vectors of complex modal coordinates xi(t) of the subsystems in the form

ui(t) =m Uixi(t) =

mi∑

ν=1

(u(i)
ν x

(i)
ν + u(i)∗

ν x(i)∗ν ), mi ≤ ni, i = 1, . . . .N . (10)

By using orthogonality conditions [1, 4]

mUT
i Ni

mUi = E2mi
, mUT

i Pi
mUi = −mΛi (11)

and the form of eigenvectors u(i)
ν in (8), equations (4) can be written as

ẋi(t)−m Λixi(t) =m QT
i

[
fEi (t) +

N∑

j=1,j 6=i
fCj,i(ui,uj)

]
, i = 1, . . . , N . (12)
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Due to the structure of the reduced (master) spectral and modal matrices of the subsystems in
the form

mΛi = diag[λ
(i)
1 , . . . , λ

(i)
mi
, λ

(i)∗
1 , . . . , λ(i)∗mi

] = diag[mΛi,
m Λ

∗
i ] ∈ C2mi,2mi , (13)

mQi = [q
(i)
1 , . . . , q

(i)
mi
, q

(i)∗
1 . . . , q(i)∗mi

] = [mQi,
mQ

∗
i ] ∈ Cni,2mi (14)

and vector of complex modal coordinates in the form

xi = [x
(i)
1 , . . . , x

(i)
mi
, x

(i)∗
1 , . . . , x(i)∗mi

]T =

[
xi
x∗i

]
, (15)

equations (12) can be divided to

ẋi(t)−m Λixi(t) =m Q
T

i

(
fEi (t) +

N∑

j=1,j 6=i
fCj,i

)
, (16)

ẋ
∗
i (t)−m Λ

∗
ix
∗
i (t) =m Q

∗T
i

(
fEi (t) +

N∑

j=1,j 6=i
fCj,i

)
. (17)

The global form of these equations is

ẋ(t)−m Λx(t) =m Q
T

(fE(t) + fC) , (18)

ẋ
∗
(t)−m Λ

∗
x∗(t) =m Q

∗T
(fE(t) + fC) , (19)

where

mΛ = diag[mΛ1, . . . ,
m ΛN ] ∈ Cm,m , mQ = diag[mQ1, . . . ,

mQN ] ∈ Cn,m , (20)

x(t) =



x1(t)

...
xN(t)


 , fE(t) =



fE1 (t)

...
fEN (t)


 , fC =




N∑

j=2

fCj,1(u1,uj)

...
N−1∑

j=1

fCj,N(uN ,uj)



. (21)

Reduced DOF number m =
N∑
i=1

mi corresponds to the dimension of vector x(t) and full DOF

number n =
N∑
i=1

ni correspond to the dimension of vectors fE(t) and fC . According to (10)

and the structure of eigenvectors u(i)
ν in (8), the dynamic response of the arbitrary subsystem i

in the original generalized coordinates is real in the form

qi(t) =m Qixi(t) +m Q
∗
ix
∗
i (t) = 2Re[mQixi(t)] , (22)

q̇i(t) =m Qi
mΛixi(t) +m Q

∗
i
mΛ

∗
ix
∗
i (t) = 2Re[mQi

mΛixi(t)] . (23)

The presented method is illustrated by numerical experiments on the impact-vibration of
two nuclear fuel assemblies in the reactor core excited by coolant pressure fluctuations. The
model of the single FA (see Fig. 1) is created using simple beam-type finite elements [6] and
the computational model of FAs interaction is described in detail in [2].
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4. Conclusions
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Fig. 1. Detailed FA model

The new modal synthesis method enables dynamic
analysis of the large multibody systems composed
from linear damped subsystems mutually coupled
by nonlinear discrete couplings. The method is
suitable especially for dynamic analysis of the sys-
tems with clearances between subsystems charac-
terised by impact and friction forces in contact sur-
faces.

Consideration of the chosen master complex
natural modes of each subsystem improves ap-
proximation of the reduced model in comparison
with classical approach of the MSM. Calculation
of complex modal values of the subsystems mod-
els with proportional damping based on real modal
values of their conservative part and the damp-
ing ratios greatly speeds up the calculation time.
These facts have been illustrated by means of nu-
merical experiments with the nuclear fuel assem-
blies in mutual interactions excited by the coolant
pressure pulsations. The concept of fuel assembly
modelling is detailed in [2].
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